MaziyarPanahi commited on
Commit
d2c7183
1 Parent(s): cede40b

Upload folder using huggingface_hub (#1)

Browse files

- 29a74ae77e89e8245426eefe817e5c9c0e8dfb8915a9cb61e71d9abcb1fdb41e (2ed6dcf65df4c1d5134dbdc78e3a0e474c918f82)
- 6b51df1de102a7f2e7839895a2d567a7da72791c89cd0681e83a1945af45a43e (d1d7749f5ca0599d9fdf833a8018516a638f649d)
- cd95e4352d91bbcbfb09e88933405e88d92c9ea69b588b5d073c088b874ca2b5 (37dec77638280e10ca42102bc197ae740272b7a7)
- 97887db7e24d12895e7016a71412a526fa4718d7cdaa7f70c0d3c4b367ff8070 (7e1d21a6ad89126585fe357b1a2fe362fb24c971)

.ipynb_checkpoints/config-checkpoint.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2-7B",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "eos_token_id": 151645,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 3584,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 18944,
12
+ "max_position_embeddings": 131072,
13
+ "max_window_layers": 28,
14
+ "model_type": "qwen2",
15
+ "num_attention_heads": 28,
16
+ "num_hidden_layers": 28,
17
+ "num_key_value_heads": 4,
18
+ "rms_norm_eps": 1e-06,
19
+ "rope_theta": 1000000.0,
20
+ "sliding_window": 131072,
21
+ "tie_word_embeddings": false,
22
+ "torch_dtype": "bfloat16",
23
+ "transformers_version": "4.41.1",
24
+ "use_cache": false,
25
+ "use_sliding_window": false,
26
+ "vocab_size": 152064
27
+ }
added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "<|endoftext|>": 151643,
3
+ "<|im_end|>": 151645,
4
+ "<|im_start|>": 151644
5
+ }
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2-7B",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "eos_token_id": 151645,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 3584,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 18944,
12
+ "max_position_embeddings": 131072,
13
+ "max_window_layers": 28,
14
+ "model_type": "qwen2",
15
+ "num_attention_heads": 28,
16
+ "num_hidden_layers": 28,
17
+ "num_key_value_heads": 4,
18
+ "rms_norm_eps": 1e-06,
19
+ "rope_theta": 1000000.0,
20
+ "sliding_window": 131072,
21
+ "tie_word_embeddings": false,
22
+ "torch_dtype": "bfloat16",
23
+ "transformers_version": "4.41.1",
24
+ "use_cache": false,
25
+ "use_sliding_window": false,
26
+ "vocab_size": 152064
27
+ }
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": 151643,
5
+ "max_new_tokens": 2048,
6
+ "transformers_version": "4.41.1"
7
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6fe7157df403e3af3e0328886829a32f76957b8b56c99caedb1921f2356c63c5
3
+ size 4877660776
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:146796ccef716e4bde6ae0a28aa6018afee4c506905e99a2131b356a13741114
3
+ size 4932751008
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8ee4e44c5766fb4e3e19837f05c4ecb8dd65b0e917d14ca246436388cc5c01a2
3
+ size 4330865200
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d4c6d17fbc1de294bf0b2891b568870bdf8d6293db48d691b64be3e63427402c
3
+ size 1089994880
model.safetensors.index.json ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 15231233024
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
260
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
266
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
269
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
278
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
281
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
283
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
285
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
288
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
289
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
290
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
291
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
292
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
293
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
294
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
295
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
296
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
297
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
298
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
299
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
300
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
301
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
302
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
303
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
304
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
305
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
306
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
307
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
308
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
309
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
310
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
311
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
312
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
313
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
314
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
315
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
316
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
317
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
318
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
319
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
320
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
321
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
322
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
323
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
324
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
325
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
326
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
327
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
328
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
329
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
330
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
331
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
332
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
333
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
334
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
335
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
336
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
337
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
338
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
339
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
340
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
341
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
342
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
343
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
344
+ "model.norm.weight": "model-00003-of-00004.safetensors"
345
+ }
346
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>"
5
+ ],
6
+ "eos_token": {
7
+ "content": "<|im_end|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "pad_token": {
14
+ "content": "<|endoftext|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ }
20
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ }
28
+ },
29
+ "additional_special_tokens": [
30
+ "<|im_start|>",
31
+ "<|im_end|>"
32
+ ],
33
+ "bos_token": null,
34
+ "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
35
+ "clean_up_tokenization_spaces": false,
36
+ "eos_token": "<|im_end|>",
37
+ "errors": "replace",
38
+ "model_max_length": 32768,
39
+ "pad_token": "<|endoftext|>",
40
+ "split_special_tokens": false,
41
+ "tokenizer_class": "Qwen2Tokenizer",
42
+ "unk_token": null
43
+ }
trainer_state.json ADDED
@@ -0,0 +1,2133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.026314635323012148,
5
+ "eval_steps": 500,
6
+ "global_step": 300,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 8.771545107670716e-05,
13
+ "grad_norm": 28.291993022356824,
14
+ "learning_rate": 4.385964912280702e-08,
15
+ "loss": 0.9764,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.00017543090215341433,
20
+ "grad_norm": 11.00431285069151,
21
+ "learning_rate": 8.771929824561404e-08,
22
+ "loss": 0.7373,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.0002631463532301215,
27
+ "grad_norm": 19.575902791602918,
28
+ "learning_rate": 1.3157894736842107e-07,
29
+ "loss": 0.92,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.00035086180430682866,
34
+ "grad_norm": 28.862884630243123,
35
+ "learning_rate": 1.7543859649122808e-07,
36
+ "loss": 0.9196,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.0004385772553835358,
41
+ "grad_norm": 15.982248327528751,
42
+ "learning_rate": 2.192982456140351e-07,
43
+ "loss": 0.8366,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.000526292706460243,
48
+ "grad_norm": 31.85723876161732,
49
+ "learning_rate": 2.6315789473684213e-07,
50
+ "loss": 0.9335,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.0006140081575369502,
55
+ "grad_norm": 21.310207454796295,
56
+ "learning_rate": 3.070175438596491e-07,
57
+ "loss": 0.8362,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.0007017236086136573,
62
+ "grad_norm": 20.052830776823505,
63
+ "learning_rate": 3.5087719298245616e-07,
64
+ "loss": 0.8015,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.0007894390596903645,
69
+ "grad_norm": 16.06788143210757,
70
+ "learning_rate": 3.9473684210526315e-07,
71
+ "loss": 0.8729,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.0008771545107670716,
76
+ "grad_norm": 29.100726513914584,
77
+ "learning_rate": 4.385964912280702e-07,
78
+ "loss": 0.9058,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.0009648699618437788,
83
+ "grad_norm": 13.993390572028792,
84
+ "learning_rate": 4.824561403508772e-07,
85
+ "loss": 0.7093,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.001052585412920486,
90
+ "grad_norm": 21.107935511000072,
91
+ "learning_rate": 5.263157894736843e-07,
92
+ "loss": 0.8955,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.0011403008639971931,
97
+ "grad_norm": 13.66193898339087,
98
+ "learning_rate": 5.701754385964912e-07,
99
+ "loss": 0.7219,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.0012280163150739003,
104
+ "grad_norm": 10.537203866107753,
105
+ "learning_rate": 6.140350877192982e-07,
106
+ "loss": 0.8429,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.0013157317661506075,
111
+ "grad_norm": 12.393106853157317,
112
+ "learning_rate": 6.578947368421053e-07,
113
+ "loss": 0.6708,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.0014034472172273146,
118
+ "grad_norm": 8.734604355126535,
119
+ "learning_rate": 7.017543859649123e-07,
120
+ "loss": 0.6507,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.0014911626683040218,
125
+ "grad_norm": 9.124362491394539,
126
+ "learning_rate": 7.456140350877194e-07,
127
+ "loss": 0.838,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.001578878119380729,
132
+ "grad_norm": 8.958389642999963,
133
+ "learning_rate": 7.894736842105263e-07,
134
+ "loss": 0.6849,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.0016665935704574361,
139
+ "grad_norm": 11.542677492312867,
140
+ "learning_rate": 8.333333333333333e-07,
141
+ "loss": 0.6926,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.0017543090215341433,
146
+ "grad_norm": 8.045066225626593,
147
+ "learning_rate": 8.771929824561404e-07,
148
+ "loss": 0.7006,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.0018420244726108505,
153
+ "grad_norm": 8.146906074379428,
154
+ "learning_rate": 9.210526315789474e-07,
155
+ "loss": 0.6737,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.0019297399236875576,
160
+ "grad_norm": 6.502955757535831,
161
+ "learning_rate": 9.649122807017545e-07,
162
+ "loss": 0.7495,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.002017455374764265,
167
+ "grad_norm": 8.736982858234592,
168
+ "learning_rate": 1.0087719298245615e-06,
169
+ "loss": 0.7324,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.002105170825840972,
174
+ "grad_norm": 7.851959741269017,
175
+ "learning_rate": 1.0526315789473685e-06,
176
+ "loss": 0.6686,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.002192886276917679,
181
+ "grad_norm": 8.594840793358543,
182
+ "learning_rate": 1.0964912280701756e-06,
183
+ "loss": 0.8064,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.0022806017279943863,
188
+ "grad_norm": 8.935665287337994,
189
+ "learning_rate": 1.1403508771929824e-06,
190
+ "loss": 0.6751,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.0023683171790710934,
195
+ "grad_norm": 11.146850280588064,
196
+ "learning_rate": 1.1842105263157894e-06,
197
+ "loss": 0.7884,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.0024560326301478006,
202
+ "grad_norm": 6.917869007862471,
203
+ "learning_rate": 1.2280701754385965e-06,
204
+ "loss": 0.8772,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.0025437480812245078,
209
+ "grad_norm": 9.32145567192897,
210
+ "learning_rate": 1.2719298245614037e-06,
211
+ "loss": 0.6486,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.002631463532301215,
216
+ "grad_norm": 7.83399807213587,
217
+ "learning_rate": 1.3157894736842106e-06,
218
+ "loss": 0.7793,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.002719178983377922,
223
+ "grad_norm": 5.701851482721999,
224
+ "learning_rate": 1.3596491228070178e-06,
225
+ "loss": 0.6418,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.0028068944344546293,
230
+ "grad_norm": 6.357569510522249,
231
+ "learning_rate": 1.4035087719298246e-06,
232
+ "loss": 0.7803,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.0028946098855313364,
237
+ "grad_norm": 6.1458878660724,
238
+ "learning_rate": 1.4473684210526317e-06,
239
+ "loss": 0.6075,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.0029823253366080436,
244
+ "grad_norm": 5.258525934759675,
245
+ "learning_rate": 1.4912280701754387e-06,
246
+ "loss": 0.7558,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.0030700407876847508,
251
+ "grad_norm": 5.96497463401995,
252
+ "learning_rate": 1.5350877192982458e-06,
253
+ "loss": 0.5807,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.003157756238761458,
258
+ "grad_norm": 9.97378904781871,
259
+ "learning_rate": 1.5789473684210526e-06,
260
+ "loss": 0.6766,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.003245471689838165,
265
+ "grad_norm": 10.558130153122322,
266
+ "learning_rate": 1.6228070175438598e-06,
267
+ "loss": 0.6318,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.0033331871409148723,
272
+ "grad_norm": 7.730592682668347,
273
+ "learning_rate": 1.6666666666666667e-06,
274
+ "loss": 0.5723,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.0034209025919915794,
279
+ "grad_norm": 6.513997535111305,
280
+ "learning_rate": 1.710526315789474e-06,
281
+ "loss": 0.7381,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.0035086180430682866,
286
+ "grad_norm": 6.4186997859745185,
287
+ "learning_rate": 1.7543859649122807e-06,
288
+ "loss": 0.676,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.0035963334941449938,
293
+ "grad_norm": 4.789756704738587,
294
+ "learning_rate": 1.798245614035088e-06,
295
+ "loss": 0.8106,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.003684048945221701,
300
+ "grad_norm": 8.552415866186008,
301
+ "learning_rate": 1.8421052631578948e-06,
302
+ "loss": 0.7834,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.003771764396298408,
307
+ "grad_norm": 5.104236885105078,
308
+ "learning_rate": 1.8859649122807019e-06,
309
+ "loss": 0.6694,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.0038594798473751152,
314
+ "grad_norm": 6.998642641947579,
315
+ "learning_rate": 1.929824561403509e-06,
316
+ "loss": 0.7184,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.003947195298451822,
321
+ "grad_norm": 6.754484565741454,
322
+ "learning_rate": 1.973684210526316e-06,
323
+ "loss": 0.7682,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.00403491074952853,
328
+ "grad_norm": 5.702466747706841,
329
+ "learning_rate": 2.017543859649123e-06,
330
+ "loss": 0.7167,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.004122626200605236,
335
+ "grad_norm": 7.038100758557257,
336
+ "learning_rate": 2.06140350877193e-06,
337
+ "loss": 0.6709,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.004210341651681944,
342
+ "grad_norm": 8.659378609826204,
343
+ "learning_rate": 2.105263157894737e-06,
344
+ "loss": 0.6508,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.004298057102758651,
349
+ "grad_norm": 9.315174303463822,
350
+ "learning_rate": 2.149122807017544e-06,
351
+ "loss": 0.6168,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.004385772553835358,
356
+ "grad_norm": 7.447716885721135,
357
+ "learning_rate": 2.192982456140351e-06,
358
+ "loss": 0.6738,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.004473488004912065,
363
+ "grad_norm": 5.600770404460154,
364
+ "learning_rate": 2.236842105263158e-06,
365
+ "loss": 0.6311,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.004561203455988773,
370
+ "grad_norm": 7.059691201242354,
371
+ "learning_rate": 2.280701754385965e-06,
372
+ "loss": 0.7204,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.004648918907065479,
377
+ "grad_norm": 5.589092290239263,
378
+ "learning_rate": 2.324561403508772e-06,
379
+ "loss": 0.7266,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.004736634358142187,
384
+ "grad_norm": 5.801762781587569,
385
+ "learning_rate": 2.368421052631579e-06,
386
+ "loss": 0.5336,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.004824349809218894,
391
+ "grad_norm": 5.599754768073974,
392
+ "learning_rate": 2.412280701754386e-06,
393
+ "loss": 0.6338,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.004912065260295601,
398
+ "grad_norm": 5.66437398031977,
399
+ "learning_rate": 2.456140350877193e-06,
400
+ "loss": 0.7813,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.004999780711372308,
405
+ "grad_norm": 6.32022790188225,
406
+ "learning_rate": 2.5e-06,
407
+ "loss": 0.6613,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.0050874961624490156,
412
+ "grad_norm": 8.01474270706056,
413
+ "learning_rate": 2.5438596491228075e-06,
414
+ "loss": 0.6451,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.005175211613525722,
419
+ "grad_norm": 6.586182462850705,
420
+ "learning_rate": 2.5877192982456147e-06,
421
+ "loss": 0.6984,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.00526292706460243,
426
+ "grad_norm": 5.61553252576188,
427
+ "learning_rate": 2.631578947368421e-06,
428
+ "loss": 0.5773,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.005350642515679137,
433
+ "grad_norm": 5.5274818204706895,
434
+ "learning_rate": 2.6754385964912284e-06,
435
+ "loss": 0.6083,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.005438357966755844,
440
+ "grad_norm": 3.8762804528384254,
441
+ "learning_rate": 2.7192982456140356e-06,
442
+ "loss": 0.7174,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.005526073417832551,
447
+ "grad_norm": 5.248404081335598,
448
+ "learning_rate": 2.7631578947368424e-06,
449
+ "loss": 0.7066,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.0056137888689092585,
454
+ "grad_norm": 7.214109517049078,
455
+ "learning_rate": 2.8070175438596493e-06,
456
+ "loss": 0.692,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.005701504319985965,
461
+ "grad_norm": 5.429278596290352,
462
+ "learning_rate": 2.8508771929824565e-06,
463
+ "loss": 0.6145,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.005789219771062673,
468
+ "grad_norm": 17.638205100824422,
469
+ "learning_rate": 2.8947368421052634e-06,
470
+ "loss": 0.7677,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.00587693522213938,
475
+ "grad_norm": 5.677374136021176,
476
+ "learning_rate": 2.9385964912280706e-06,
477
+ "loss": 0.6779,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.005964650673216087,
482
+ "grad_norm": 5.453107411280262,
483
+ "learning_rate": 2.9824561403508774e-06,
484
+ "loss": 0.6428,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.006052366124292794,
489
+ "grad_norm": 5.888626008478417,
490
+ "learning_rate": 3.0263157894736843e-06,
491
+ "loss": 0.6342,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.0061400815753695015,
496
+ "grad_norm": 5.3185045733144225,
497
+ "learning_rate": 3.0701754385964915e-06,
498
+ "loss": 0.5644,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.006227797026446208,
503
+ "grad_norm": 4.902919731780363,
504
+ "learning_rate": 3.1140350877192988e-06,
505
+ "loss": 0.709,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.006315512477522916,
510
+ "grad_norm": 8.773622618503456,
511
+ "learning_rate": 3.157894736842105e-06,
512
+ "loss": 0.6674,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.006403227928599623,
517
+ "grad_norm": 6.7570883776978174,
518
+ "learning_rate": 3.2017543859649124e-06,
519
+ "loss": 0.6918,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.00649094337967633,
524
+ "grad_norm": 5.597179964370573,
525
+ "learning_rate": 3.2456140350877197e-06,
526
+ "loss": 0.7119,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.006578658830753037,
531
+ "grad_norm": 5.4824260737552795,
532
+ "learning_rate": 3.289473684210527e-06,
533
+ "loss": 0.5667,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.0066663742818297445,
538
+ "grad_norm": 6.083422094529157,
539
+ "learning_rate": 3.3333333333333333e-06,
540
+ "loss": 0.5972,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.006754089732906451,
545
+ "grad_norm": 6.688559230122185,
546
+ "learning_rate": 3.3771929824561406e-06,
547
+ "loss": 0.6079,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.006841805183983159,
552
+ "grad_norm": 4.675152512564395,
553
+ "learning_rate": 3.421052631578948e-06,
554
+ "loss": 0.6431,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.006929520635059866,
559
+ "grad_norm": 6.61824094926871,
560
+ "learning_rate": 3.464912280701755e-06,
561
+ "loss": 0.7219,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.007017236086136573,
566
+ "grad_norm": 4.3090639659166685,
567
+ "learning_rate": 3.5087719298245615e-06,
568
+ "loss": 0.6267,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.00710495153721328,
573
+ "grad_norm": 5.908526205124108,
574
+ "learning_rate": 3.5526315789473687e-06,
575
+ "loss": 0.5598,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.0071926669882899875,
580
+ "grad_norm": 4.954945711406169,
581
+ "learning_rate": 3.596491228070176e-06,
582
+ "loss": 0.6251,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.007280382439366694,
587
+ "grad_norm": 6.403352381905709,
588
+ "learning_rate": 3.640350877192983e-06,
589
+ "loss": 0.6921,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.007368097890443402,
594
+ "grad_norm": 5.8960340556018505,
595
+ "learning_rate": 3.6842105263157896e-06,
596
+ "loss": 0.5803,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.007455813341520109,
601
+ "grad_norm": 5.5832723717085795,
602
+ "learning_rate": 3.728070175438597e-06,
603
+ "loss": 0.7109,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.007543528792596816,
608
+ "grad_norm": 6.9538610646678425,
609
+ "learning_rate": 3.7719298245614037e-06,
610
+ "loss": 0.57,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.007631244243673523,
615
+ "grad_norm": 4.9040721673618615,
616
+ "learning_rate": 3.815789473684211e-06,
617
+ "loss": 0.6681,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.0077189596947502305,
622
+ "grad_norm": 4.367227562952691,
623
+ "learning_rate": 3.859649122807018e-06,
624
+ "loss": 0.5881,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.007806675145826937,
629
+ "grad_norm": 6.135869823936115,
630
+ "learning_rate": 3.903508771929825e-06,
631
+ "loss": 0.6333,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.007894390596903644,
636
+ "grad_norm": 5.26232269598073,
637
+ "learning_rate": 3.947368421052632e-06,
638
+ "loss": 0.6228,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.007982106047980352,
643
+ "grad_norm": 5.478510766614749,
644
+ "learning_rate": 3.991228070175439e-06,
645
+ "loss": 0.6889,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.00806982149905706,
650
+ "grad_norm": 7.252221492478827,
651
+ "learning_rate": 4.035087719298246e-06,
652
+ "loss": 0.6726,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.008157536950133767,
657
+ "grad_norm": 6.810323867433885,
658
+ "learning_rate": 4.078947368421053e-06,
659
+ "loss": 0.6186,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.008245252401210473,
664
+ "grad_norm": 5.1477310672971965,
665
+ "learning_rate": 4.12280701754386e-06,
666
+ "loss": 0.6739,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.00833296785228718,
671
+ "grad_norm": 4.455009313283226,
672
+ "learning_rate": 4.166666666666667e-06,
673
+ "loss": 0.6676,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.008420683303363888,
678
+ "grad_norm": 4.854476484535793,
679
+ "learning_rate": 4.210526315789474e-06,
680
+ "loss": 0.624,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.008508398754440595,
685
+ "grad_norm": 8.775528791539337,
686
+ "learning_rate": 4.254385964912281e-06,
687
+ "loss": 0.7236,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.008596114205517301,
692
+ "grad_norm": 4.656928105654083,
693
+ "learning_rate": 4.298245614035088e-06,
694
+ "loss": 0.4853,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.008683829656594009,
699
+ "grad_norm": 6.1151229878888795,
700
+ "learning_rate": 4.342105263157895e-06,
701
+ "loss": 0.6611,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.008771545107670716,
706
+ "grad_norm": 4.846266795088099,
707
+ "learning_rate": 4.385964912280702e-06,
708
+ "loss": 0.6899,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.008859260558747424,
713
+ "grad_norm": 5.63076019856985,
714
+ "learning_rate": 4.429824561403509e-06,
715
+ "loss": 0.7394,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.00894697600982413,
720
+ "grad_norm": 6.152211661702361,
721
+ "learning_rate": 4.473684210526316e-06,
722
+ "loss": 0.6366,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.009034691460900838,
727
+ "grad_norm": 5.271237730819475,
728
+ "learning_rate": 4.517543859649123e-06,
729
+ "loss": 0.6776,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.009122406911977545,
734
+ "grad_norm": 6.150704296921181,
735
+ "learning_rate": 4.56140350877193e-06,
736
+ "loss": 0.7287,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.009210122363054253,
741
+ "grad_norm": 5.511353295743786,
742
+ "learning_rate": 4.605263157894737e-06,
743
+ "loss": 0.7156,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.009297837814130959,
748
+ "grad_norm": 5.651321362023493,
749
+ "learning_rate": 4.649122807017544e-06,
750
+ "loss": 0.5971,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.009385553265207666,
755
+ "grad_norm": 4.521052312786367,
756
+ "learning_rate": 4.692982456140351e-06,
757
+ "loss": 0.662,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.009473268716284374,
762
+ "grad_norm": 6.5893774516601775,
763
+ "learning_rate": 4.736842105263158e-06,
764
+ "loss": 0.6838,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.009560984167361081,
769
+ "grad_norm": 7.413604525506308,
770
+ "learning_rate": 4.780701754385965e-06,
771
+ "loss": 0.6798,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.009648699618437787,
776
+ "grad_norm": 5.258683042524991,
777
+ "learning_rate": 4.824561403508772e-06,
778
+ "loss": 0.7137,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.009736415069514495,
783
+ "grad_norm": 3.56629655229689,
784
+ "learning_rate": 4.8684210526315795e-06,
785
+ "loss": 0.5524,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.009824130520591202,
790
+ "grad_norm": 7.972594797604,
791
+ "learning_rate": 4.912280701754386e-06,
792
+ "loss": 0.7946,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.00991184597166791,
797
+ "grad_norm": 5.9169587346561965,
798
+ "learning_rate": 4.956140350877193e-06,
799
+ "loss": 0.6985,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.009999561422744616,
804
+ "grad_norm": 4.9028768240583895,
805
+ "learning_rate": 5e-06,
806
+ "loss": 0.7471,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.010087276873821324,
811
+ "grad_norm": 4.952040118758915,
812
+ "learning_rate": 4.999999903143301e-06,
813
+ "loss": 0.6645,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.010174992324898031,
818
+ "grad_norm": 5.307375041926707,
819
+ "learning_rate": 4.999999612573212e-06,
820
+ "loss": 0.6568,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.010262707775974739,
825
+ "grad_norm": 4.417210142946582,
826
+ "learning_rate": 4.9999991282897545e-06,
827
+ "loss": 0.6633,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 0.010350423227051445,
832
+ "grad_norm": 6.813103500844099,
833
+ "learning_rate": 4.999998450292966e-06,
834
+ "loss": 0.7479,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 0.010438138678128152,
839
+ "grad_norm": 5.220452049535287,
840
+ "learning_rate": 4.9999975785829e-06,
841
+ "loss": 0.5982,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 0.01052585412920486,
846
+ "grad_norm": 6.470241976711781,
847
+ "learning_rate": 4.999996513159624e-06,
848
+ "loss": 0.5915,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 0.010613569580281567,
853
+ "grad_norm": 5.236784827517624,
854
+ "learning_rate": 4.99999525402322e-06,
855
+ "loss": 0.665,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 0.010701285031358273,
860
+ "grad_norm": 5.5322906674158565,
861
+ "learning_rate": 4.999993801173785e-06,
862
+ "loss": 0.473,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 0.01078900048243498,
867
+ "grad_norm": 5.643434680672429,
868
+ "learning_rate": 4.999992154611433e-06,
869
+ "loss": 0.5802,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 0.010876715933511688,
874
+ "grad_norm": 4.909123022379139,
875
+ "learning_rate": 4.9999903143362905e-06,
876
+ "loss": 0.6103,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 0.010964431384588396,
881
+ "grad_norm": 7.046173121098522,
882
+ "learning_rate": 4.999988280348501e-06,
883
+ "loss": 0.6601,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 0.011052146835665102,
888
+ "grad_norm": 5.567754476589664,
889
+ "learning_rate": 4.99998605264822e-06,
890
+ "loss": 0.7144,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 0.01113986228674181,
895
+ "grad_norm": 6.670512866037107,
896
+ "learning_rate": 4.999983631235623e-06,
897
+ "loss": 0.5034,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 0.011227577737818517,
902
+ "grad_norm": 5.068760146843144,
903
+ "learning_rate": 4.999981016110896e-06,
904
+ "loss": 0.5965,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 0.011315293188895225,
909
+ "grad_norm": 5.493410339028754,
910
+ "learning_rate": 4.999978207274243e-06,
911
+ "loss": 0.6697,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 0.01140300863997193,
916
+ "grad_norm": 5.662089015796081,
917
+ "learning_rate": 4.999975204725879e-06,
918
+ "loss": 0.7182,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 0.011490724091048638,
923
+ "grad_norm": 3.734356064938746,
924
+ "learning_rate": 4.999972008466039e-06,
925
+ "loss": 0.632,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 0.011578439542125346,
930
+ "grad_norm": 4.29907687663725,
931
+ "learning_rate": 4.99996861849497e-06,
932
+ "loss": 0.6321,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 0.011666154993202053,
937
+ "grad_norm": 5.292963722155827,
938
+ "learning_rate": 4.999965034812934e-06,
939
+ "loss": 0.5768,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 0.01175387044427876,
944
+ "grad_norm": 4.564589196086129,
945
+ "learning_rate": 4.99996125742021e-06,
946
+ "loss": 0.5991,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 0.011841585895355467,
951
+ "grad_norm": 5.889974426321806,
952
+ "learning_rate": 4.99995728631709e-06,
953
+ "loss": 0.568,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 0.011929301346432174,
958
+ "grad_norm": 4.903556688362067,
959
+ "learning_rate": 4.999953121503881e-06,
960
+ "loss": 0.6221,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 0.012017016797508882,
965
+ "grad_norm": 4.652137494582458,
966
+ "learning_rate": 4.999948762980906e-06,
967
+ "loss": 0.6499,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 0.012104732248585588,
972
+ "grad_norm": 7.2681565015460965,
973
+ "learning_rate": 4.999944210748504e-06,
974
+ "loss": 0.7997,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 0.012192447699662295,
979
+ "grad_norm": 4.498966830496647,
980
+ "learning_rate": 4.999939464807027e-06,
981
+ "loss": 0.7033,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 0.012280163150739003,
986
+ "grad_norm": 5.658829625864849,
987
+ "learning_rate": 4.999934525156842e-06,
988
+ "loss": 0.6234,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 0.01236787860181571,
993
+ "grad_norm": 6.170987539440289,
994
+ "learning_rate": 4.9999293917983325e-06,
995
+ "loss": 0.7359,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 0.012455594052892417,
1000
+ "grad_norm": 4.889450035742974,
1001
+ "learning_rate": 4.999924064731896e-06,
1002
+ "loss": 0.6418,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 0.012543309503969124,
1007
+ "grad_norm": 5.565665252735285,
1008
+ "learning_rate": 4.9999185439579445e-06,
1009
+ "loss": 0.8114,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 0.012631024955045832,
1014
+ "grad_norm": 5.009655972578068,
1015
+ "learning_rate": 4.9999128294769075e-06,
1016
+ "loss": 0.7307,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 0.01271874040612254,
1021
+ "grad_norm": 5.011444448419762,
1022
+ "learning_rate": 4.999906921289227e-06,
1023
+ "loss": 0.6434,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 0.012806455857199245,
1028
+ "grad_norm": 5.91290249112379,
1029
+ "learning_rate": 4.999900819395361e-06,
1030
+ "loss": 0.7576,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 0.012894171308275953,
1035
+ "grad_norm": 5.291827066915767,
1036
+ "learning_rate": 4.9998945237957814e-06,
1037
+ "loss": 0.717,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 0.01298188675935266,
1042
+ "grad_norm": 6.889695918810895,
1043
+ "learning_rate": 4.9998880344909765e-06,
1044
+ "loss": 0.6566,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 0.013069602210429368,
1049
+ "grad_norm": 4.139725258131711,
1050
+ "learning_rate": 4.999881351481449e-06,
1051
+ "loss": 0.6139,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 0.013157317661506074,
1056
+ "grad_norm": 5.041147601092224,
1057
+ "learning_rate": 4.999874474767718e-06,
1058
+ "loss": 0.7046,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 0.013245033112582781,
1063
+ "grad_norm": 4.850191233243735,
1064
+ "learning_rate": 4.999867404350315e-06,
1065
+ "loss": 0.6494,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 0.013332748563659489,
1070
+ "grad_norm": 5.608814210289025,
1071
+ "learning_rate": 4.999860140229788e-06,
1072
+ "loss": 0.8654,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 0.013420464014736197,
1077
+ "grad_norm": 4.097824317856954,
1078
+ "learning_rate": 4.9998526824067e-06,
1079
+ "loss": 0.6889,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 0.013508179465812903,
1084
+ "grad_norm": 6.425927321695068,
1085
+ "learning_rate": 4.999845030881629e-06,
1086
+ "loss": 0.5837,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 0.01359589491688961,
1091
+ "grad_norm": 7.686652681051417,
1092
+ "learning_rate": 4.999837185655168e-06,
1093
+ "loss": 0.6869,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 0.013683610367966318,
1098
+ "grad_norm": 6.199666417167642,
1099
+ "learning_rate": 4.9998291467279245e-06,
1100
+ "loss": 0.7371,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 0.013771325819043024,
1105
+ "grad_norm": 6.797879751043678,
1106
+ "learning_rate": 4.999820914100522e-06,
1107
+ "loss": 0.6912,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 0.013859041270119731,
1112
+ "grad_norm": 9.837640179642968,
1113
+ "learning_rate": 4.999812487773597e-06,
1114
+ "loss": 0.8045,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 0.013946756721196439,
1119
+ "grad_norm": 6.620454193744729,
1120
+ "learning_rate": 4.9998038677478044e-06,
1121
+ "loss": 0.6018,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 0.014034472172273146,
1126
+ "grad_norm": 4.952380418390811,
1127
+ "learning_rate": 4.99979505402381e-06,
1128
+ "loss": 0.5851,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 0.014122187623349852,
1133
+ "grad_norm": 4.571346505498035,
1134
+ "learning_rate": 4.999786046602299e-06,
1135
+ "loss": 0.6633,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 0.01420990307442656,
1140
+ "grad_norm": 6.745466717777739,
1141
+ "learning_rate": 4.999776845483968e-06,
1142
+ "loss": 0.714,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 0.014297618525503267,
1147
+ "grad_norm": 4.888639355192875,
1148
+ "learning_rate": 4.999767450669531e-06,
1149
+ "loss": 0.5328,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 0.014385333976579975,
1154
+ "grad_norm": 5.263414218540685,
1155
+ "learning_rate": 4.999757862159713e-06,
1156
+ "loss": 0.6746,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 0.014473049427656681,
1161
+ "grad_norm": 5.8723140369149895,
1162
+ "learning_rate": 4.99974807995526e-06,
1163
+ "loss": 0.7101,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 0.014560764878733388,
1168
+ "grad_norm": 4.125348885535371,
1169
+ "learning_rate": 4.999738104056931e-06,
1170
+ "loss": 0.6418,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 0.014648480329810096,
1175
+ "grad_norm": 5.079939786355144,
1176
+ "learning_rate": 4.999727934465495e-06,
1177
+ "loss": 0.6757,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 0.014736195780886804,
1182
+ "grad_norm": 4.436648943550616,
1183
+ "learning_rate": 4.999717571181742e-06,
1184
+ "loss": 0.6878,
1185
+ "step": 168
1186
+ },
1187
+ {
1188
+ "epoch": 0.01482391123196351,
1189
+ "grad_norm": 4.6070293178483706,
1190
+ "learning_rate": 4.999707014206475e-06,
1191
+ "loss": 0.6882,
1192
+ "step": 169
1193
+ },
1194
+ {
1195
+ "epoch": 0.014911626683040217,
1196
+ "grad_norm": 4.337658765605819,
1197
+ "learning_rate": 4.999696263540513e-06,
1198
+ "loss": 0.6418,
1199
+ "step": 170
1200
+ },
1201
+ {
1202
+ "epoch": 0.014999342134116925,
1203
+ "grad_norm": 5.834498841218243,
1204
+ "learning_rate": 4.999685319184688e-06,
1205
+ "loss": 0.6367,
1206
+ "step": 171
1207
+ },
1208
+ {
1209
+ "epoch": 0.015087057585193632,
1210
+ "grad_norm": 6.027148776110112,
1211
+ "learning_rate": 4.999674181139848e-06,
1212
+ "loss": 0.7505,
1213
+ "step": 172
1214
+ },
1215
+ {
1216
+ "epoch": 0.015174773036270338,
1217
+ "grad_norm": 4.712652033599274,
1218
+ "learning_rate": 4.999662849406855e-06,
1219
+ "loss": 0.7515,
1220
+ "step": 173
1221
+ },
1222
+ {
1223
+ "epoch": 0.015262488487347046,
1224
+ "grad_norm": 5.325275991673836,
1225
+ "learning_rate": 4.99965132398659e-06,
1226
+ "loss": 0.7871,
1227
+ "step": 174
1228
+ },
1229
+ {
1230
+ "epoch": 0.015350203938423753,
1231
+ "grad_norm": 5.006048437293231,
1232
+ "learning_rate": 4.999639604879943e-06,
1233
+ "loss": 0.6038,
1234
+ "step": 175
1235
+ },
1236
+ {
1237
+ "epoch": 0.015437919389500461,
1238
+ "grad_norm": 4.692976251794895,
1239
+ "learning_rate": 4.999627692087824e-06,
1240
+ "loss": 0.7106,
1241
+ "step": 176
1242
+ },
1243
+ {
1244
+ "epoch": 0.015525634840577167,
1245
+ "grad_norm": 6.484912012474024,
1246
+ "learning_rate": 4.999615585611156e-06,
1247
+ "loss": 0.6456,
1248
+ "step": 177
1249
+ },
1250
+ {
1251
+ "epoch": 0.015613350291653874,
1252
+ "grad_norm": 7.072312221146792,
1253
+ "learning_rate": 4.999603285450875e-06,
1254
+ "loss": 0.6986,
1255
+ "step": 178
1256
+ },
1257
+ {
1258
+ "epoch": 0.015701065742730582,
1259
+ "grad_norm": 5.072158684292459,
1260
+ "learning_rate": 4.999590791607936e-06,
1261
+ "loss": 0.6386,
1262
+ "step": 179
1263
+ },
1264
+ {
1265
+ "epoch": 0.015788781193807288,
1266
+ "grad_norm": 5.674801641765509,
1267
+ "learning_rate": 4.999578104083307e-06,
1268
+ "loss": 0.6512,
1269
+ "step": 180
1270
+ },
1271
+ {
1272
+ "epoch": 0.015876496644883997,
1273
+ "grad_norm": 6.011232915930249,
1274
+ "learning_rate": 4.9995652228779715e-06,
1275
+ "loss": 0.6166,
1276
+ "step": 181
1277
+ },
1278
+ {
1279
+ "epoch": 0.015964212095960703,
1280
+ "grad_norm": 7.067996556252431,
1281
+ "learning_rate": 4.999552147992926e-06,
1282
+ "loss": 0.8316,
1283
+ "step": 182
1284
+ },
1285
+ {
1286
+ "epoch": 0.01605192754703741,
1287
+ "grad_norm": 6.191586224655665,
1288
+ "learning_rate": 4.999538879429183e-06,
1289
+ "loss": 0.7167,
1290
+ "step": 183
1291
+ },
1292
+ {
1293
+ "epoch": 0.01613964299811412,
1294
+ "grad_norm": 5.40861794404673,
1295
+ "learning_rate": 4.999525417187774e-06,
1296
+ "loss": 0.6604,
1297
+ "step": 184
1298
+ },
1299
+ {
1300
+ "epoch": 0.016227358449190824,
1301
+ "grad_norm": 5.619694849325643,
1302
+ "learning_rate": 4.999511761269739e-06,
1303
+ "loss": 0.7141,
1304
+ "step": 185
1305
+ },
1306
+ {
1307
+ "epoch": 0.016315073900267534,
1308
+ "grad_norm": 7.467663008400906,
1309
+ "learning_rate": 4.999497911676138e-06,
1310
+ "loss": 0.6086,
1311
+ "step": 186
1312
+ },
1313
+ {
1314
+ "epoch": 0.01640278935134424,
1315
+ "grad_norm": 4.645589903763359,
1316
+ "learning_rate": 4.999483868408043e-06,
1317
+ "loss": 0.6932,
1318
+ "step": 187
1319
+ },
1320
+ {
1321
+ "epoch": 0.016490504802420945,
1322
+ "grad_norm": 4.819294533224638,
1323
+ "learning_rate": 4.999469631466544e-06,
1324
+ "loss": 0.6256,
1325
+ "step": 188
1326
+ },
1327
+ {
1328
+ "epoch": 0.016578220253497655,
1329
+ "grad_norm": 4.711171445741636,
1330
+ "learning_rate": 4.999455200852741e-06,
1331
+ "loss": 0.7445,
1332
+ "step": 189
1333
+ },
1334
+ {
1335
+ "epoch": 0.01666593570457436,
1336
+ "grad_norm": 4.371758877075776,
1337
+ "learning_rate": 4.999440576567755e-06,
1338
+ "loss": 0.6801,
1339
+ "step": 190
1340
+ },
1341
+ {
1342
+ "epoch": 0.016753651155651066,
1343
+ "grad_norm": 5.761171404408883,
1344
+ "learning_rate": 4.999425758612718e-06,
1345
+ "loss": 0.6701,
1346
+ "step": 191
1347
+ },
1348
+ {
1349
+ "epoch": 0.016841366606727776,
1350
+ "grad_norm": 4.340375314807721,
1351
+ "learning_rate": 4.999410746988778e-06,
1352
+ "loss": 0.5556,
1353
+ "step": 192
1354
+ },
1355
+ {
1356
+ "epoch": 0.01692908205780448,
1357
+ "grad_norm": 4.775058922031801,
1358
+ "learning_rate": 4.9993955416970986e-06,
1359
+ "loss": 0.6915,
1360
+ "step": 193
1361
+ },
1362
+ {
1363
+ "epoch": 0.01701679750888119,
1364
+ "grad_norm": 4.301940379009061,
1365
+ "learning_rate": 4.999380142738857e-06,
1366
+ "loss": 0.6982,
1367
+ "step": 194
1368
+ },
1369
+ {
1370
+ "epoch": 0.017104512959957897,
1371
+ "grad_norm": 4.746670538298819,
1372
+ "learning_rate": 4.9993645501152485e-06,
1373
+ "loss": 0.5392,
1374
+ "step": 195
1375
+ },
1376
+ {
1377
+ "epoch": 0.017192228411034603,
1378
+ "grad_norm": 5.312812102176541,
1379
+ "learning_rate": 4.999348763827479e-06,
1380
+ "loss": 0.6254,
1381
+ "step": 196
1382
+ },
1383
+ {
1384
+ "epoch": 0.017279943862111312,
1385
+ "grad_norm": 6.073252701324542,
1386
+ "learning_rate": 4.999332783876774e-06,
1387
+ "loss": 0.7221,
1388
+ "step": 197
1389
+ },
1390
+ {
1391
+ "epoch": 0.017367659313188018,
1392
+ "grad_norm": 6.783014797465277,
1393
+ "learning_rate": 4.999316610264369e-06,
1394
+ "loss": 0.5914,
1395
+ "step": 198
1396
+ },
1397
+ {
1398
+ "epoch": 0.017455374764264724,
1399
+ "grad_norm": 5.105373260000072,
1400
+ "learning_rate": 4.999300242991519e-06,
1401
+ "loss": 0.4895,
1402
+ "step": 199
1403
+ },
1404
+ {
1405
+ "epoch": 0.017543090215341433,
1406
+ "grad_norm": 5.3256898167081825,
1407
+ "learning_rate": 4.999283682059493e-06,
1408
+ "loss": 0.714,
1409
+ "step": 200
1410
+ },
1411
+ {
1412
+ "epoch": 0.01763080566641814,
1413
+ "grad_norm": 7.815945435660424,
1414
+ "learning_rate": 4.999266927469572e-06,
1415
+ "loss": 0.7691,
1416
+ "step": 201
1417
+ },
1418
+ {
1419
+ "epoch": 0.017718521117494848,
1420
+ "grad_norm": 4.350216346007481,
1421
+ "learning_rate": 4.999249979223056e-06,
1422
+ "loss": 0.7205,
1423
+ "step": 202
1424
+ },
1425
+ {
1426
+ "epoch": 0.017806236568571554,
1427
+ "grad_norm": 4.167534183562087,
1428
+ "learning_rate": 4.999232837321257e-06,
1429
+ "loss": 0.6716,
1430
+ "step": 203
1431
+ },
1432
+ {
1433
+ "epoch": 0.01789395201964826,
1434
+ "grad_norm": 6.564156035042191,
1435
+ "learning_rate": 4.999215501765504e-06,
1436
+ "loss": 0.6139,
1437
+ "step": 204
1438
+ },
1439
+ {
1440
+ "epoch": 0.01798166747072497,
1441
+ "grad_norm": 4.58988335300785,
1442
+ "learning_rate": 4.9991979725571395e-06,
1443
+ "loss": 0.6241,
1444
+ "step": 205
1445
+ },
1446
+ {
1447
+ "epoch": 0.018069382921801675,
1448
+ "grad_norm": 7.14774553510386,
1449
+ "learning_rate": 4.999180249697524e-06,
1450
+ "loss": 0.7338,
1451
+ "step": 206
1452
+ },
1453
+ {
1454
+ "epoch": 0.01815709837287838,
1455
+ "grad_norm": 4.3154768710391656,
1456
+ "learning_rate": 4.999162333188028e-06,
1457
+ "loss": 0.646,
1458
+ "step": 207
1459
+ },
1460
+ {
1461
+ "epoch": 0.01824481382395509,
1462
+ "grad_norm": 3.930924147546703,
1463
+ "learning_rate": 4.999144223030041e-06,
1464
+ "loss": 0.7162,
1465
+ "step": 208
1466
+ },
1467
+ {
1468
+ "epoch": 0.018332529275031796,
1469
+ "grad_norm": 3.75066761929553,
1470
+ "learning_rate": 4.999125919224966e-06,
1471
+ "loss": 0.6283,
1472
+ "step": 209
1473
+ },
1474
+ {
1475
+ "epoch": 0.018420244726108505,
1476
+ "grad_norm": 4.916459254987505,
1477
+ "learning_rate": 4.999107421774222e-06,
1478
+ "loss": 0.6716,
1479
+ "step": 210
1480
+ },
1481
+ {
1482
+ "epoch": 0.01850796017718521,
1483
+ "grad_norm": 4.570226928027306,
1484
+ "learning_rate": 4.999088730679241e-06,
1485
+ "loss": 0.6527,
1486
+ "step": 211
1487
+ },
1488
+ {
1489
+ "epoch": 0.018595675628261917,
1490
+ "grad_norm": 3.6658012035372605,
1491
+ "learning_rate": 4.999069845941472e-06,
1492
+ "loss": 0.5452,
1493
+ "step": 212
1494
+ },
1495
+ {
1496
+ "epoch": 0.018683391079338627,
1497
+ "grad_norm": 4.697816375671605,
1498
+ "learning_rate": 4.999050767562379e-06,
1499
+ "loss": 0.7316,
1500
+ "step": 213
1501
+ },
1502
+ {
1503
+ "epoch": 0.018771106530415332,
1504
+ "grad_norm": 5.639876519194002,
1505
+ "learning_rate": 4.99903149554344e-06,
1506
+ "loss": 0.5152,
1507
+ "step": 214
1508
+ },
1509
+ {
1510
+ "epoch": 0.018858821981492038,
1511
+ "grad_norm": 5.527702869650481,
1512
+ "learning_rate": 4.999012029886147e-06,
1513
+ "loss": 0.6119,
1514
+ "step": 215
1515
+ },
1516
+ {
1517
+ "epoch": 0.018946537432568748,
1518
+ "grad_norm": 6.019639388484205,
1519
+ "learning_rate": 4.998992370592008e-06,
1520
+ "loss": 0.7366,
1521
+ "step": 216
1522
+ },
1523
+ {
1524
+ "epoch": 0.019034252883645453,
1525
+ "grad_norm": 4.014799337285965,
1526
+ "learning_rate": 4.998972517662549e-06,
1527
+ "loss": 0.7088,
1528
+ "step": 217
1529
+ },
1530
+ {
1531
+ "epoch": 0.019121968334722163,
1532
+ "grad_norm": 7.876499612097003,
1533
+ "learning_rate": 4.998952471099307e-06,
1534
+ "loss": 0.5565,
1535
+ "step": 218
1536
+ },
1537
+ {
1538
+ "epoch": 0.01920968378579887,
1539
+ "grad_norm": 7.386792956892447,
1540
+ "learning_rate": 4.998932230903835e-06,
1541
+ "loss": 0.6387,
1542
+ "step": 219
1543
+ },
1544
+ {
1545
+ "epoch": 0.019297399236875575,
1546
+ "grad_norm": 5.346097163630257,
1547
+ "learning_rate": 4.998911797077701e-06,
1548
+ "loss": 0.6237,
1549
+ "step": 220
1550
+ },
1551
+ {
1552
+ "epoch": 0.019385114687952284,
1553
+ "grad_norm": 6.133310652425816,
1554
+ "learning_rate": 4.998891169622488e-06,
1555
+ "loss": 0.7428,
1556
+ "step": 221
1557
+ },
1558
+ {
1559
+ "epoch": 0.01947283013902899,
1560
+ "grad_norm": 4.224801633855712,
1561
+ "learning_rate": 4.998870348539797e-06,
1562
+ "loss": 0.7206,
1563
+ "step": 222
1564
+ },
1565
+ {
1566
+ "epoch": 0.019560545590105696,
1567
+ "grad_norm": 5.648869005800134,
1568
+ "learning_rate": 4.998849333831238e-06,
1569
+ "loss": 0.6249,
1570
+ "step": 223
1571
+ },
1572
+ {
1573
+ "epoch": 0.019648261041182405,
1574
+ "grad_norm": 4.634920959306503,
1575
+ "learning_rate": 4.998828125498441e-06,
1576
+ "loss": 0.6764,
1577
+ "step": 224
1578
+ },
1579
+ {
1580
+ "epoch": 0.01973597649225911,
1581
+ "grad_norm": 4.882651557085375,
1582
+ "learning_rate": 4.998806723543049e-06,
1583
+ "loss": 0.6682,
1584
+ "step": 225
1585
+ },
1586
+ {
1587
+ "epoch": 0.01982369194333582,
1588
+ "grad_norm": 4.5073631852916645,
1589
+ "learning_rate": 4.998785127966721e-06,
1590
+ "loss": 0.7658,
1591
+ "step": 226
1592
+ },
1593
+ {
1594
+ "epoch": 0.019911407394412526,
1595
+ "grad_norm": 6.444404326993186,
1596
+ "learning_rate": 4.99876333877113e-06,
1597
+ "loss": 0.7161,
1598
+ "step": 227
1599
+ },
1600
+ {
1601
+ "epoch": 0.019999122845489232,
1602
+ "grad_norm": 5.926254683053582,
1603
+ "learning_rate": 4.998741355957963e-06,
1604
+ "loss": 0.6083,
1605
+ "step": 228
1606
+ },
1607
+ {
1608
+ "epoch": 0.02008683829656594,
1609
+ "grad_norm": 4.715935033600424,
1610
+ "learning_rate": 4.998719179528925e-06,
1611
+ "loss": 0.5764,
1612
+ "step": 229
1613
+ },
1614
+ {
1615
+ "epoch": 0.020174553747642647,
1616
+ "grad_norm": 4.06642116262848,
1617
+ "learning_rate": 4.998696809485734e-06,
1618
+ "loss": 0.6436,
1619
+ "step": 230
1620
+ },
1621
+ {
1622
+ "epoch": 0.020262269198719353,
1623
+ "grad_norm": 4.060536926809771,
1624
+ "learning_rate": 4.998674245830123e-06,
1625
+ "loss": 0.6455,
1626
+ "step": 231
1627
+ },
1628
+ {
1629
+ "epoch": 0.020349984649796062,
1630
+ "grad_norm": 5.769596888340199,
1631
+ "learning_rate": 4.9986514885638405e-06,
1632
+ "loss": 0.6422,
1633
+ "step": 232
1634
+ },
1635
+ {
1636
+ "epoch": 0.020437700100872768,
1637
+ "grad_norm": 5.619149975421577,
1638
+ "learning_rate": 4.99862853768865e-06,
1639
+ "loss": 0.5151,
1640
+ "step": 233
1641
+ },
1642
+ {
1643
+ "epoch": 0.020525415551949477,
1644
+ "grad_norm": 5.738973149236573,
1645
+ "learning_rate": 4.998605393206329e-06,
1646
+ "loss": 0.5698,
1647
+ "step": 234
1648
+ },
1649
+ {
1650
+ "epoch": 0.020613131003026183,
1651
+ "grad_norm": 3.9117936997485443,
1652
+ "learning_rate": 4.998582055118672e-06,
1653
+ "loss": 0.6139,
1654
+ "step": 235
1655
+ },
1656
+ {
1657
+ "epoch": 0.02070084645410289,
1658
+ "grad_norm": 5.594946157519774,
1659
+ "learning_rate": 4.998558523427488e-06,
1660
+ "loss": 0.6305,
1661
+ "step": 236
1662
+ },
1663
+ {
1664
+ "epoch": 0.0207885619051796,
1665
+ "grad_norm": 3.7796595114227816,
1666
+ "learning_rate": 4.998534798134598e-06,
1667
+ "loss": 0.6064,
1668
+ "step": 237
1669
+ },
1670
+ {
1671
+ "epoch": 0.020876277356256304,
1672
+ "grad_norm": 5.530110712124758,
1673
+ "learning_rate": 4.998510879241842e-06,
1674
+ "loss": 0.7404,
1675
+ "step": 238
1676
+ },
1677
+ {
1678
+ "epoch": 0.02096399280733301,
1679
+ "grad_norm": 5.795681054870311,
1680
+ "learning_rate": 4.998486766751073e-06,
1681
+ "loss": 0.6637,
1682
+ "step": 239
1683
+ },
1684
+ {
1685
+ "epoch": 0.02105170825840972,
1686
+ "grad_norm": 5.250443330736557,
1687
+ "learning_rate": 4.99846246066416e-06,
1688
+ "loss": 0.7229,
1689
+ "step": 240
1690
+ },
1691
+ {
1692
+ "epoch": 0.021139423709486425,
1693
+ "grad_norm": 5.307033877732376,
1694
+ "learning_rate": 4.998437960982985e-06,
1695
+ "loss": 0.729,
1696
+ "step": 241
1697
+ },
1698
+ {
1699
+ "epoch": 0.021227139160563135,
1700
+ "grad_norm": 4.264326950314863,
1701
+ "learning_rate": 4.998413267709446e-06,
1702
+ "loss": 0.6363,
1703
+ "step": 242
1704
+ },
1705
+ {
1706
+ "epoch": 0.02131485461163984,
1707
+ "grad_norm": 4.56674428695937,
1708
+ "learning_rate": 4.99838838084546e-06,
1709
+ "loss": 0.573,
1710
+ "step": 243
1711
+ },
1712
+ {
1713
+ "epoch": 0.021402570062716546,
1714
+ "grad_norm": 5.367393577306364,
1715
+ "learning_rate": 4.998363300392951e-06,
1716
+ "loss": 0.6187,
1717
+ "step": 244
1718
+ },
1719
+ {
1720
+ "epoch": 0.021490285513793256,
1721
+ "grad_norm": 5.58627031411974,
1722
+ "learning_rate": 4.998338026353865e-06,
1723
+ "loss": 0.635,
1724
+ "step": 245
1725
+ },
1726
+ {
1727
+ "epoch": 0.02157800096486996,
1728
+ "grad_norm": 4.1536241104050005,
1729
+ "learning_rate": 4.9983125587301594e-06,
1730
+ "loss": 0.7296,
1731
+ "step": 246
1732
+ },
1733
+ {
1734
+ "epoch": 0.021665716415946668,
1735
+ "grad_norm": 5.369955138376355,
1736
+ "learning_rate": 4.998286897523808e-06,
1737
+ "loss": 0.5939,
1738
+ "step": 247
1739
+ },
1740
+ {
1741
+ "epoch": 0.021753431867023377,
1742
+ "grad_norm": 4.749169550030242,
1743
+ "learning_rate": 4.998261042736799e-06,
1744
+ "loss": 0.7125,
1745
+ "step": 248
1746
+ },
1747
+ {
1748
+ "epoch": 0.021841147318100083,
1749
+ "grad_norm": 3.847851803716185,
1750
+ "learning_rate": 4.998234994371135e-06,
1751
+ "loss": 0.6874,
1752
+ "step": 249
1753
+ },
1754
+ {
1755
+ "epoch": 0.021928862769176792,
1756
+ "grad_norm": 6.3610718821634755,
1757
+ "learning_rate": 4.998208752428836e-06,
1758
+ "loss": 0.6839,
1759
+ "step": 250
1760
+ },
1761
+ {
1762
+ "epoch": 0.022016578220253498,
1763
+ "grad_norm": 6.90892255007994,
1764
+ "learning_rate": 4.998182316911934e-06,
1765
+ "loss": 0.6706,
1766
+ "step": 251
1767
+ },
1768
+ {
1769
+ "epoch": 0.022104293671330204,
1770
+ "grad_norm": 4.842858396629252,
1771
+ "learning_rate": 4.998155687822478e-06,
1772
+ "loss": 0.7887,
1773
+ "step": 252
1774
+ },
1775
+ {
1776
+ "epoch": 0.022192009122406913,
1777
+ "grad_norm": 6.80960196083629,
1778
+ "learning_rate": 4.99812886516253e-06,
1779
+ "loss": 0.6891,
1780
+ "step": 253
1781
+ },
1782
+ {
1783
+ "epoch": 0.02227972457348362,
1784
+ "grad_norm": 6.897100992823047,
1785
+ "learning_rate": 4.998101848934171e-06,
1786
+ "loss": 0.7213,
1787
+ "step": 254
1788
+ },
1789
+ {
1790
+ "epoch": 0.022367440024560325,
1791
+ "grad_norm": 4.383904436150581,
1792
+ "learning_rate": 4.9980746391394916e-06,
1793
+ "loss": 0.5472,
1794
+ "step": 255
1795
+ },
1796
+ {
1797
+ "epoch": 0.022455155475637034,
1798
+ "grad_norm": 6.136102422729719,
1799
+ "learning_rate": 4.998047235780603e-06,
1800
+ "loss": 0.7462,
1801
+ "step": 256
1802
+ },
1803
+ {
1804
+ "epoch": 0.02254287092671374,
1805
+ "grad_norm": 5.873462354540876,
1806
+ "learning_rate": 4.9980196388596255e-06,
1807
+ "loss": 0.6893,
1808
+ "step": 257
1809
+ },
1810
+ {
1811
+ "epoch": 0.02263058637779045,
1812
+ "grad_norm": 5.36389164609212,
1813
+ "learning_rate": 4.9979918483787e-06,
1814
+ "loss": 0.725,
1815
+ "step": 258
1816
+ },
1817
+ {
1818
+ "epoch": 0.022718301828867155,
1819
+ "grad_norm": 6.634852411669424,
1820
+ "learning_rate": 4.997963864339978e-06,
1821
+ "loss": 0.7619,
1822
+ "step": 259
1823
+ },
1824
+ {
1825
+ "epoch": 0.02280601727994386,
1826
+ "grad_norm": 4.201015694891079,
1827
+ "learning_rate": 4.99793568674563e-06,
1828
+ "loss": 0.653,
1829
+ "step": 260
1830
+ },
1831
+ {
1832
+ "epoch": 0.02289373273102057,
1833
+ "grad_norm": 4.951129353141893,
1834
+ "learning_rate": 4.997907315597836e-06,
1835
+ "loss": 0.7543,
1836
+ "step": 261
1837
+ },
1838
+ {
1839
+ "epoch": 0.022981448182097276,
1840
+ "grad_norm": 4.331792323630216,
1841
+ "learning_rate": 4.997878750898798e-06,
1842
+ "loss": 0.6553,
1843
+ "step": 262
1844
+ },
1845
+ {
1846
+ "epoch": 0.023069163633173982,
1847
+ "grad_norm": 4.764837636647203,
1848
+ "learning_rate": 4.997849992650727e-06,
1849
+ "loss": 0.719,
1850
+ "step": 263
1851
+ },
1852
+ {
1853
+ "epoch": 0.02315687908425069,
1854
+ "grad_norm": 7.315146297212186,
1855
+ "learning_rate": 4.997821040855852e-06,
1856
+ "loss": 0.8217,
1857
+ "step": 264
1858
+ },
1859
+ {
1860
+ "epoch": 0.023244594535327397,
1861
+ "grad_norm": 4.5164891139288015,
1862
+ "learning_rate": 4.997791895516417e-06,
1863
+ "loss": 0.5553,
1864
+ "step": 265
1865
+ },
1866
+ {
1867
+ "epoch": 0.023332309986404107,
1868
+ "grad_norm": 4.651549875308793,
1869
+ "learning_rate": 4.99776255663468e-06,
1870
+ "loss": 0.6981,
1871
+ "step": 266
1872
+ },
1873
+ {
1874
+ "epoch": 0.023420025437480813,
1875
+ "grad_norm": 4.941120481014187,
1876
+ "learning_rate": 4.997733024212913e-06,
1877
+ "loss": 0.604,
1878
+ "step": 267
1879
+ },
1880
+ {
1881
+ "epoch": 0.02350774088855752,
1882
+ "grad_norm": 6.3616778757465315,
1883
+ "learning_rate": 4.997703298253406e-06,
1884
+ "loss": 0.7253,
1885
+ "step": 268
1886
+ },
1887
+ {
1888
+ "epoch": 0.023595456339634228,
1889
+ "grad_norm": 4.723855693485358,
1890
+ "learning_rate": 4.997673378758462e-06,
1891
+ "loss": 0.7335,
1892
+ "step": 269
1893
+ },
1894
+ {
1895
+ "epoch": 0.023683171790710934,
1896
+ "grad_norm": 4.336523073382538,
1897
+ "learning_rate": 4.997643265730399e-06,
1898
+ "loss": 0.5665,
1899
+ "step": 270
1900
+ },
1901
+ {
1902
+ "epoch": 0.02377088724178764,
1903
+ "grad_norm": 6.547875149524498,
1904
+ "learning_rate": 4.997612959171549e-06,
1905
+ "loss": 0.6542,
1906
+ "step": 271
1907
+ },
1908
+ {
1909
+ "epoch": 0.02385860269286435,
1910
+ "grad_norm": 5.285021138793967,
1911
+ "learning_rate": 4.997582459084264e-06,
1912
+ "loss": 0.7824,
1913
+ "step": 272
1914
+ },
1915
+ {
1916
+ "epoch": 0.023946318143941055,
1917
+ "grad_norm": 4.447718203152539,
1918
+ "learning_rate": 4.9975517654709025e-06,
1919
+ "loss": 0.6728,
1920
+ "step": 273
1921
+ },
1922
+ {
1923
+ "epoch": 0.024034033595017764,
1924
+ "grad_norm": 4.323105158596241,
1925
+ "learning_rate": 4.997520878333847e-06,
1926
+ "loss": 0.6516,
1927
+ "step": 274
1928
+ },
1929
+ {
1930
+ "epoch": 0.02412174904609447,
1931
+ "grad_norm": 4.091596093860627,
1932
+ "learning_rate": 4.997489797675489e-06,
1933
+ "loss": 0.5786,
1934
+ "step": 275
1935
+ },
1936
+ {
1937
+ "epoch": 0.024209464497171176,
1938
+ "grad_norm": 4.50262054947591,
1939
+ "learning_rate": 4.997458523498236e-06,
1940
+ "loss": 0.6632,
1941
+ "step": 276
1942
+ },
1943
+ {
1944
+ "epoch": 0.024297179948247885,
1945
+ "grad_norm": 5.394966563241667,
1946
+ "learning_rate": 4.997427055804513e-06,
1947
+ "loss": 0.7415,
1948
+ "step": 277
1949
+ },
1950
+ {
1951
+ "epoch": 0.02438489539932459,
1952
+ "grad_norm": 5.134838704391961,
1953
+ "learning_rate": 4.9973953945967565e-06,
1954
+ "loss": 0.6225,
1955
+ "step": 278
1956
+ },
1957
+ {
1958
+ "epoch": 0.024472610850401297,
1959
+ "grad_norm": 4.555937935551801,
1960
+ "learning_rate": 4.9973635398774226e-06,
1961
+ "loss": 0.7451,
1962
+ "step": 279
1963
+ },
1964
+ {
1965
+ "epoch": 0.024560326301478006,
1966
+ "grad_norm": 4.014041307501394,
1967
+ "learning_rate": 4.997331491648976e-06,
1968
+ "loss": 0.607,
1969
+ "step": 280
1970
+ },
1971
+ {
1972
+ "epoch": 0.024648041752554712,
1973
+ "grad_norm": 5.398424400960683,
1974
+ "learning_rate": 4.9972992499139025e-06,
1975
+ "loss": 0.665,
1976
+ "step": 281
1977
+ },
1978
+ {
1979
+ "epoch": 0.02473575720363142,
1980
+ "grad_norm": 6.959554022697295,
1981
+ "learning_rate": 4.9972668146746995e-06,
1982
+ "loss": 0.8175,
1983
+ "step": 282
1984
+ },
1985
+ {
1986
+ "epoch": 0.024823472654708127,
1987
+ "grad_norm": 5.048396931572014,
1988
+ "learning_rate": 4.997234185933879e-06,
1989
+ "loss": 0.6961,
1990
+ "step": 283
1991
+ },
1992
+ {
1993
+ "epoch": 0.024911188105784833,
1994
+ "grad_norm": 4.737474855724115,
1995
+ "learning_rate": 4.997201363693972e-06,
1996
+ "loss": 0.5337,
1997
+ "step": 284
1998
+ },
1999
+ {
2000
+ "epoch": 0.024998903556861542,
2001
+ "grad_norm": 7.374843310231967,
2002
+ "learning_rate": 4.997168347957521e-06,
2003
+ "loss": 0.6791,
2004
+ "step": 285
2005
+ },
2006
+ {
2007
+ "epoch": 0.025086619007938248,
2008
+ "grad_norm": 4.306967488515473,
2009
+ "learning_rate": 4.997135138727081e-06,
2010
+ "loss": 0.8791,
2011
+ "step": 286
2012
+ },
2013
+ {
2014
+ "epoch": 0.025174334459014954,
2015
+ "grad_norm": 3.7949900410813737,
2016
+ "learning_rate": 4.99710173600523e-06,
2017
+ "loss": 0.7743,
2018
+ "step": 287
2019
+ },
2020
+ {
2021
+ "epoch": 0.025262049910091663,
2022
+ "grad_norm": 4.842604758031469,
2023
+ "learning_rate": 4.997068139794554e-06,
2024
+ "loss": 0.6602,
2025
+ "step": 288
2026
+ },
2027
+ {
2028
+ "epoch": 0.02534976536116837,
2029
+ "grad_norm": 3.531764677671023,
2030
+ "learning_rate": 4.9970343500976545e-06,
2031
+ "loss": 0.6317,
2032
+ "step": 289
2033
+ },
2034
+ {
2035
+ "epoch": 0.02543748081224508,
2036
+ "grad_norm": 5.68234167540357,
2037
+ "learning_rate": 4.997000366917153e-06,
2038
+ "loss": 0.7404,
2039
+ "step": 290
2040
+ },
2041
+ {
2042
+ "epoch": 0.025525196263321785,
2043
+ "grad_norm": 4.623883782994243,
2044
+ "learning_rate": 4.9969661902556804e-06,
2045
+ "loss": 0.6093,
2046
+ "step": 291
2047
+ },
2048
+ {
2049
+ "epoch": 0.02561291171439849,
2050
+ "grad_norm": 5.9956405593570175,
2051
+ "learning_rate": 4.996931820115885e-06,
2052
+ "loss": 0.6773,
2053
+ "step": 292
2054
+ },
2055
+ {
2056
+ "epoch": 0.0257006271654752,
2057
+ "grad_norm": 5.06274620174889,
2058
+ "learning_rate": 4.996897256500433e-06,
2059
+ "loss": 0.7249,
2060
+ "step": 293
2061
+ },
2062
+ {
2063
+ "epoch": 0.025788342616551906,
2064
+ "grad_norm": 5.989915075597491,
2065
+ "learning_rate": 4.996862499411998e-06,
2066
+ "loss": 0.7526,
2067
+ "step": 294
2068
+ },
2069
+ {
2070
+ "epoch": 0.02587605806762861,
2071
+ "grad_norm": 4.58567195302804,
2072
+ "learning_rate": 4.996827548853276e-06,
2073
+ "loss": 0.6762,
2074
+ "step": 295
2075
+ },
2076
+ {
2077
+ "epoch": 0.02596377351870532,
2078
+ "grad_norm": 4.097368677404026,
2079
+ "learning_rate": 4.996792404826974e-06,
2080
+ "loss": 0.6238,
2081
+ "step": 296
2082
+ },
2083
+ {
2084
+ "epoch": 0.026051488969782027,
2085
+ "grad_norm": 4.021749832913485,
2086
+ "learning_rate": 4.996757067335816e-06,
2087
+ "loss": 0.7958,
2088
+ "step": 297
2089
+ },
2090
+ {
2091
+ "epoch": 0.026139204420858736,
2092
+ "grad_norm": 4.679522912267575,
2093
+ "learning_rate": 4.99672153638254e-06,
2094
+ "loss": 0.6583,
2095
+ "step": 298
2096
+ },
2097
+ {
2098
+ "epoch": 0.026226919871935442,
2099
+ "grad_norm": 4.256974035317045,
2100
+ "learning_rate": 4.996685811969898e-06,
2101
+ "loss": 0.6464,
2102
+ "step": 299
2103
+ },
2104
+ {
2105
+ "epoch": 0.026314635323012148,
2106
+ "grad_norm": 4.4862335847168096,
2107
+ "learning_rate": 4.996649894100659e-06,
2108
+ "loss": 0.6116,
2109
+ "step": 300
2110
+ }
2111
+ ],
2112
+ "logging_steps": 1,
2113
+ "max_steps": 11400,
2114
+ "num_input_tokens_seen": 0,
2115
+ "num_train_epochs": 1,
2116
+ "save_steps": 150,
2117
+ "stateful_callbacks": {
2118
+ "TrainerControl": {
2119
+ "args": {
2120
+ "should_epoch_stop": false,
2121
+ "should_evaluate": false,
2122
+ "should_log": false,
2123
+ "should_save": true,
2124
+ "should_training_stop": false
2125
+ },
2126
+ "attributes": {}
2127
+ }
2128
+ },
2129
+ "total_flos": 7802380615680.0,
2130
+ "train_batch_size": 1,
2131
+ "trial_name": null,
2132
+ "trial_params": null
2133
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff