npvinHnivqn
commited on
Commit
•
644de3d
1
Parent(s):
5b18e3a
Update README file
Browse files
README.md
CHANGED
@@ -6,41 +6,41 @@ tags: []
|
|
6 |
## Original result
|
7 |
```
|
8 |
IoU metric: bbox
|
9 |
-
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.
|
10 |
-
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.
|
11 |
-
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.
|
12 |
-
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.
|
13 |
-
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.
|
14 |
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
|
15 |
-
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.
|
16 |
-
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.
|
17 |
-
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.
|
18 |
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.389
|
19 |
-
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.
|
20 |
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
|
21 |
```
|
22 |
|
23 |
## After training result
|
24 |
```
|
25 |
IoU metric: bbox
|
26 |
-
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.
|
27 |
-
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.
|
28 |
-
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.
|
29 |
-
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.
|
30 |
-
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.
|
31 |
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
|
32 |
-
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.
|
33 |
-
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.
|
34 |
-
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.
|
35 |
-
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.
|
36 |
-
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.
|
37 |
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
|
38 |
```
|
39 |
|
40 |
## Config
|
41 |
- dataset: NIH
|
42 |
- original model: facebook/detr-resnet-50
|
43 |
-
- lr: 5e-
|
44 |
- dropout_rate: 0.1
|
45 |
- weight_decay: 0.05
|
46 |
- max_epochs: 20
|
@@ -49,27 +49,27 @@ IoU metric: bbox
|
|
49 |
## Logging
|
50 |
### Training process
|
51 |
```
|
52 |
-
{'validation_loss': tensor(2.
|
53 |
-
{'training_loss': tensor(
|
54 |
-
{'training_loss': tensor(
|
55 |
-
{'training_loss': tensor(0.
|
56 |
-
{'training_loss': tensor(0.
|
57 |
-
{'training_loss': tensor(
|
58 |
-
{'training_loss': tensor(0.
|
59 |
-
{'training_loss': tensor(
|
60 |
-
{'training_loss': tensor(
|
61 |
-
{'training_loss': tensor(
|
62 |
-
{'training_loss': tensor(
|
63 |
-
{'training_loss': tensor(
|
64 |
-
{'training_loss': tensor(
|
65 |
-
{'training_loss': tensor(
|
66 |
-
{'training_loss': tensor(
|
67 |
-
{'training_loss': tensor(
|
68 |
-
{'training_loss': tensor(
|
69 |
-
{'training_loss': tensor(
|
70 |
-
{'training_loss': tensor(
|
71 |
-
{'training_loss': tensor(
|
72 |
-
{'training_loss': tensor(
|
73 |
```
|
74 |
|
75 |
## Examples
|
|
|
6 |
## Original result
|
7 |
```
|
8 |
IoU metric: bbox
|
9 |
+
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.024
|
10 |
+
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.032
|
11 |
+
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.027
|
12 |
+
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.092
|
13 |
+
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.070
|
14 |
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
|
15 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.074
|
16 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.254
|
17 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.464
|
18 |
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.389
|
19 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.552
|
20 |
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
|
21 |
```
|
22 |
|
23 |
## After training result
|
24 |
```
|
25 |
IoU metric: bbox
|
26 |
+
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.452
|
27 |
+
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.566
|
28 |
+
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.515
|
29 |
+
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.461
|
30 |
+
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.521
|
31 |
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
|
32 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.174
|
33 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.636
|
34 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.718
|
35 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.615
|
36 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.839
|
37 |
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
|
38 |
```
|
39 |
|
40 |
## Config
|
41 |
- dataset: NIH
|
42 |
- original model: facebook/detr-resnet-50
|
43 |
+
- lr: 5e-06
|
44 |
- dropout_rate: 0.1
|
45 |
- weight_decay: 0.05
|
46 |
- max_epochs: 20
|
|
|
49 |
## Logging
|
50 |
### Training process
|
51 |
```
|
52 |
+
{'validation_loss': tensor(2.7805, device='cuda:0'), 'validation_loss_ce': tensor(0.7506, device='cuda:0'), 'validation_loss_bbox': tensor(0.1834, device='cuda:0'), 'validation_loss_giou': tensor(0.5565, device='cuda:0'), 'validation_cardinality_error': tensor(65.2500, device='cuda:0')}
|
53 |
+
{'training_loss': tensor(1.3692, device='cuda:0'), 'train_loss_ce': tensor(0.6425, device='cuda:0'), 'train_loss_bbox': tensor(0.0420, device='cuda:0'), 'train_loss_giou': tensor(0.2583, device='cuda:0'), 'train_cardinality_error': tensor(49., device='cuda:0'), 'validation_loss': tensor(1.9955, device='cuda:0'), 'validation_loss_ce': tensor(0.6964, device='cuda:0'), 'validation_loss_bbox': tensor(0.0949, device='cuda:0'), 'validation_loss_giou': tensor(0.4123, device='cuda:0'), 'validation_cardinality_error': tensor(54.8462, device='cuda:0')}
|
54 |
+
{'training_loss': tensor(0.7776, device='cuda:0'), 'train_loss_ce': tensor(0.4950, device='cuda:0'), 'train_loss_bbox': tensor(0.0243, device='cuda:0'), 'train_loss_giou': tensor(0.0805, device='cuda:0'), 'train_cardinality_error': tensor(8., device='cuda:0'), 'validation_loss': tensor(1.6961, device='cuda:0'), 'validation_loss_ce': tensor(0.6763, device='cuda:0'), 'validation_loss_bbox': tensor(0.0584, device='cuda:0'), 'validation_loss_giou': tensor(0.3638, device='cuda:0'), 'validation_cardinality_error': tensor(48.2308, device='cuda:0')}
|
55 |
+
{'training_loss': tensor(0.7145, device='cuda:0'), 'train_loss_ce': tensor(0.4630, device='cuda:0'), 'train_loss_bbox': tensor(0.0209, device='cuda:0'), 'train_loss_giou': tensor(0.0735, device='cuda:0'), 'train_cardinality_error': tensor(2., device='cuda:0'), 'validation_loss': tensor(1.5552, device='cuda:0'), 'validation_loss_ce': tensor(0.6569, device='cuda:0'), 'validation_loss_bbox': tensor(0.0531, device='cuda:0'), 'validation_loss_giou': tensor(0.3164, device='cuda:0'), 'validation_cardinality_error': tensor(39.6154, device='cuda:0')}
|
56 |
+
{'training_loss': tensor(0.7801, device='cuda:0'), 'train_loss_ce': tensor(0.6306, device='cuda:0'), 'train_loss_bbox': tensor(0.0154, device='cuda:0'), 'train_loss_giou': tensor(0.0363, device='cuda:0'), 'train_cardinality_error': tensor(41., device='cuda:0'), 'validation_loss': tensor(1.4825, device='cuda:0'), 'validation_loss_ce': tensor(0.6332, device='cuda:0'), 'validation_loss_bbox': tensor(0.0563, device='cuda:0'), 'validation_loss_giou': tensor(0.2839, device='cuda:0'), 'validation_cardinality_error': tensor(31.3846, device='cuda:0')}
|
57 |
+
{'training_loss': tensor(1.1043, device='cuda:0'), 'train_loss_ce': tensor(0.6572, device='cuda:0'), 'train_loss_bbox': tensor(0.0306, device='cuda:0'), 'train_loss_giou': tensor(0.1471, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.4447, device='cuda:0'), 'validation_loss_ce': tensor(0.6126, device='cuda:0'), 'validation_loss_bbox': tensor(0.0545, device='cuda:0'), 'validation_loss_giou': tensor(0.2798, device='cuda:0'), 'validation_cardinality_error': tensor(25., device='cuda:0')}
|
58 |
+
{'training_loss': tensor(0.7144, device='cuda:0'), 'train_loss_ce': tensor(0.5595, device='cuda:0'), 'train_loss_bbox': tensor(0.0076, device='cuda:0'), 'train_loss_giou': tensor(0.0585, device='cuda:0'), 'train_cardinality_error': tensor(10., device='cuda:0'), 'validation_loss': tensor(1.6468, device='cuda:0'), 'validation_loss_ce': tensor(0.5955, device='cuda:0'), 'validation_loss_bbox': tensor(0.0691, device='cuda:0'), 'validation_loss_giou': tensor(0.3530, device='cuda:0'), 'validation_cardinality_error': tensor(20.7692, device='cuda:0')}
|
59 |
+
{'training_loss': tensor(0.7055, device='cuda:0'), 'train_loss_ce': tensor(0.5208, device='cuda:0'), 'train_loss_bbox': tensor(0.0134, device='cuda:0'), 'train_loss_giou': tensor(0.0587, device='cuda:0'), 'train_cardinality_error': tensor(4., device='cuda:0'), 'validation_loss': tensor(1.4338, device='cuda:0'), 'validation_loss_ce': tensor(0.5776, device='cuda:0'), 'validation_loss_bbox': tensor(0.0511, device='cuda:0'), 'validation_loss_giou': tensor(0.3002, device='cuda:0'), 'validation_cardinality_error': tensor(15.6154, device='cuda:0')}
|
60 |
+
{'training_loss': tensor(0.6106, device='cuda:0'), 'train_loss_ce': tensor(0.3884, device='cuda:0'), 'train_loss_bbox': tensor(0.0299, device='cuda:0'), 'train_loss_giou': tensor(0.0363, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.5870, device='cuda:0'), 'validation_loss_ce': tensor(0.5597, device='cuda:0'), 'validation_loss_bbox': tensor(0.0673, device='cuda:0'), 'validation_loss_giou': tensor(0.3454, device='cuda:0'), 'validation_cardinality_error': tensor(11.7692, device='cuda:0')}
|
61 |
+
{'training_loss': tensor(0.7294, device='cuda:0'), 'train_loss_ce': tensor(0.5093, device='cuda:0'), 'train_loss_bbox': tensor(0.0122, device='cuda:0'), 'train_loss_giou': tensor(0.0795, device='cuda:0'), 'train_cardinality_error': tensor(2., device='cuda:0'), 'validation_loss': tensor(1.3645, device='cuda:0'), 'validation_loss_ce': tensor(0.5496, device='cuda:0'), 'validation_loss_bbox': tensor(0.0514, device='cuda:0'), 'validation_loss_giou': tensor(0.2789, device='cuda:0'), 'validation_cardinality_error': tensor(8.9231, device='cuda:0')}
|
62 |
+
{'training_loss': tensor(0.7845, device='cuda:0'), 'train_loss_ce': tensor(0.5872, device='cuda:0'), 'train_loss_bbox': tensor(0.0111, device='cuda:0'), 'train_loss_giou': tensor(0.0710, device='cuda:0'), 'train_cardinality_error': tensor(4., device='cuda:0'), 'validation_loss': tensor(1.5335, device='cuda:0'), 'validation_loss_ce': tensor(0.5374, device='cuda:0'), 'validation_loss_bbox': tensor(0.0669, device='cuda:0'), 'validation_loss_giou': tensor(0.3307, device='cuda:0'), 'validation_cardinality_error': tensor(6.6154, device='cuda:0')}
|
63 |
+
{'training_loss': tensor(0.3810, device='cuda:0'), 'train_loss_ce': tensor(0.3312, device='cuda:0'), 'train_loss_bbox': tensor(0.0028, device='cuda:0'), 'train_loss_giou': tensor(0.0179, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(1.4720, device='cuda:0'), 'validation_loss_ce': tensor(0.5209, device='cuda:0'), 'validation_loss_bbox': tensor(0.0572, device='cuda:0'), 'validation_loss_giou': tensor(0.3326, device='cuda:0'), 'validation_cardinality_error': tensor(5.7692, device='cuda:0')}
|
64 |
+
{'training_loss': tensor(0.9936, device='cuda:0'), 'train_loss_ce': tensor(0.7054, device='cuda:0'), 'train_loss_bbox': tensor(0.0178, device='cuda:0'), 'train_loss_giou': tensor(0.0996, device='cuda:0'), 'train_cardinality_error': tensor(13., device='cuda:0'), 'validation_loss': tensor(1.4543, device='cuda:0'), 'validation_loss_ce': tensor(0.5103, device='cuda:0'), 'validation_loss_bbox': tensor(0.0641, device='cuda:0'), 'validation_loss_giou': tensor(0.3117, device='cuda:0'), 'validation_cardinality_error': tensor(4.7692, device='cuda:0')}
|
65 |
+
{'training_loss': tensor(0.5030, device='cuda:0'), 'train_loss_ce': tensor(0.3787, device='cuda:0'), 'train_loss_bbox': tensor(0.0170, device='cuda:0'), 'train_loss_giou': tensor(0.0196, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.6086, device='cuda:0'), 'validation_loss_ce': tensor(0.5086, device='cuda:0'), 'validation_loss_bbox': tensor(0.0739, device='cuda:0'), 'validation_loss_giou': tensor(0.3652, device='cuda:0'), 'validation_cardinality_error': tensor(4.3077, device='cuda:0')}
|
66 |
+
{'training_loss': tensor(0.6252, device='cuda:0'), 'train_loss_ce': tensor(0.3750, device='cuda:0'), 'train_loss_bbox': tensor(0.0278, device='cuda:0'), 'train_loss_giou': tensor(0.0556, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.0120, device='cuda:0'), 'validation_loss_ce': tensor(0.4808, device='cuda:0'), 'validation_loss_bbox': tensor(0.0253, device='cuda:0'), 'validation_loss_giou': tensor(0.2022, device='cuda:0'), 'validation_cardinality_error': tensor(3.3077, device='cuda:0')}
|
67 |
+
{'training_loss': tensor(1.2132, device='cuda:0'), 'train_loss_ce': tensor(0.7323, device='cuda:0'), 'train_loss_bbox': tensor(0.0422, device='cuda:0'), 'train_loss_giou': tensor(0.1350, device='cuda:0'), 'train_cardinality_error': tensor(11., device='cuda:0'), 'validation_loss': tensor(0.8473, device='cuda:0'), 'validation_loss_ce': tensor(0.4638, device='cuda:0'), 'validation_loss_bbox': tensor(0.0177, device='cuda:0'), 'validation_loss_giou': tensor(0.1475, device='cuda:0'), 'validation_cardinality_error': tensor(2.6923, device='cuda:0')}
|
68 |
+
{'training_loss': tensor(0.4347, device='cuda:0'), 'train_loss_ce': tensor(0.3896, device='cuda:0'), 'train_loss_bbox': tensor(0.0037, device='cuda:0'), 'train_loss_giou': tensor(0.0132, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.8593, device='cuda:0'), 'validation_loss_ce': tensor(0.4498, device='cuda:0'), 'validation_loss_bbox': tensor(0.0195, device='cuda:0'), 'validation_loss_giou': tensor(0.1560, device='cuda:0'), 'validation_cardinality_error': tensor(2.6154, device='cuda:0')}
|
69 |
+
{'training_loss': tensor(0.4821, device='cuda:0'), 'train_loss_ce': tensor(0.4537, device='cuda:0'), 'train_loss_bbox': tensor(0.0014, device='cuda:0'), 'train_loss_giou': tensor(0.0106, device='cuda:0'), 'train_cardinality_error': tensor(2., device='cuda:0'), 'validation_loss': tensor(0.9156, device='cuda:0'), 'validation_loss_ce': tensor(0.4412, device='cuda:0'), 'validation_loss_bbox': tensor(0.0223, device='cuda:0'), 'validation_loss_giou': tensor(0.1814, device='cuda:0'), 'validation_cardinality_error': tensor(2.6154, device='cuda:0')}
|
70 |
+
{'training_loss': tensor(0.5579, device='cuda:0'), 'train_loss_ce': tensor(0.3216, device='cuda:0'), 'train_loss_bbox': tensor(0.0260, device='cuda:0'), 'train_loss_giou': tensor(0.0531, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.8854, device='cuda:0'), 'validation_loss_ce': tensor(0.4308, device='cuda:0'), 'validation_loss_bbox': tensor(0.0209, device='cuda:0'), 'validation_loss_giou': tensor(0.1750, device='cuda:0'), 'validation_cardinality_error': tensor(2.6154, device='cuda:0')}
|
71 |
+
{'training_loss': tensor(0.3421, device='cuda:0'), 'train_loss_ce': tensor(0.3072, device='cuda:0'), 'train_loss_bbox': tensor(0.0029, device='cuda:0'), 'train_loss_giou': tensor(0.0103, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.8500, device='cuda:0'), 'validation_loss_ce': tensor(0.4143, device='cuda:0'), 'validation_loss_bbox': tensor(0.0191, device='cuda:0'), 'validation_loss_giou': tensor(0.1700, device='cuda:0'), 'validation_cardinality_error': tensor(2.3846, device='cuda:0')}
|
72 |
+
{'training_loss': tensor(0.4960, device='cuda:0'), 'train_loss_ce': tensor(0.3847, device='cuda:0'), 'train_loss_bbox': tensor(0.0085, device='cuda:0'), 'train_loss_giou': tensor(0.0343, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.8550, device='cuda:0'), 'validation_loss_ce': tensor(0.4080, device='cuda:0'), 'validation_loss_bbox': tensor(0.0216, device='cuda:0'), 'validation_loss_giou': tensor(0.1695, device='cuda:0'), 'validation_cardinality_error': tensor(2.3077, device='cuda:0')}
|
73 |
```
|
74 |
|
75 |
## Examples
|