npvinHnivqn
commited on
Commit
•
94b40f6
1
Parent(s):
5abe299
Update README file
Browse files
README.md
CHANGED
@@ -3,197 +3,76 @@ library_name: transformers
|
|
3 |
tags: []
|
4 |
---
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
3 |
tags: []
|
4 |
---
|
5 |
|
6 |
+
## Original result
|
7 |
+
```
|
8 |
+
IoU metric: bbox
|
9 |
+
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.042
|
10 |
+
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.058
|
11 |
+
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.041
|
12 |
+
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.128
|
13 |
+
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.093
|
14 |
+
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
|
15 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.062
|
16 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.250
|
17 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.470
|
18 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.393
|
19 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.561
|
20 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
|
21 |
+
```
|
22 |
+
|
23 |
+
## After training result
|
24 |
+
```
|
25 |
+
IoU metric: bbox
|
26 |
+
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.575
|
27 |
+
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.744
|
28 |
+
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.661
|
29 |
+
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.534
|
30 |
+
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.767
|
31 |
+
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
|
32 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.200
|
33 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.648
|
34 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.694
|
35 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.574
|
36 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.835
|
37 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
|
38 |
+
```
|
39 |
+
|
40 |
+
## Config
|
41 |
+
- dataset: NIH
|
42 |
+
- original model: facebook/detr-resnet-50
|
43 |
+
- lr: 1e-05
|
44 |
+
- dropout_rate: 0.1
|
45 |
+
- weight_decay: 0.05
|
46 |
+
- max_epochs: 20
|
47 |
+
- train samples: 61
|
48 |
+
|
49 |
+
## Logging
|
50 |
+
### Training process
|
51 |
+
```
|
52 |
+
{'validation_loss': tensor(2.8403, device='cuda:0'), 'validation_loss_ce': tensor(0.7536, device='cuda:0'), 'validation_loss_bbox': tensor(0.1414, device='cuda:0'), 'validation_loss_giou': tensor(0.6899, device='cuda:0'), 'validation_cardinality_error': tensor(88.5000, device='cuda:0')}
|
53 |
+
{'training_loss': tensor(0.9331, device='cuda:0'), 'train_loss_ce': tensor(0.7954, device='cuda:0'), 'train_loss_bbox': tensor(0.0169, device='cuda:0'), 'train_loss_giou': tensor(0.0266, device='cuda:0'), 'train_cardinality_error': tensor(73., device='cuda:0'), 'validation_loss': tensor(1.9357, device='cuda:0'), 'validation_loss_ce': tensor(0.7015, device='cuda:0'), 'validation_loss_bbox': tensor(0.0786, device='cuda:0'), 'validation_loss_giou': tensor(0.4205, device='cuda:0'), 'validation_cardinality_error': tensor(63., device='cuda:0')}
|
54 |
+
{'training_loss': tensor(0.7740, device='cuda:0'), 'train_loss_ce': tensor(0.6548, device='cuda:0'), 'train_loss_bbox': tensor(0.0032, device='cuda:0'), 'train_loss_giou': tensor(0.0516, device='cuda:0'), 'train_cardinality_error': tensor(15., device='cuda:0'), 'validation_loss': tensor(1.6569, device='cuda:0'), 'validation_loss_ce': tensor(0.6407, device='cuda:0'), 'validation_loss_bbox': tensor(0.0773, device='cuda:0'), 'validation_loss_giou': tensor(0.3149, device='cuda:0'), 'validation_cardinality_error': tensor(38.3846, device='cuda:0')}
|
55 |
+
{'training_loss': tensor(0.8202, device='cuda:0'), 'train_loss_ce': tensor(0.5803, device='cuda:0'), 'train_loss_bbox': tensor(0.0250, device='cuda:0'), 'train_loss_giou': tensor(0.0574, device='cuda:0'), 'train_cardinality_error': tensor(19., device='cuda:0'), 'validation_loss': tensor(1.5251, device='cuda:0'), 'validation_loss_ce': tensor(0.6084, device='cuda:0'), 'validation_loss_bbox': tensor(0.0518, device='cuda:0'), 'validation_loss_giou': tensor(0.3288, device='cuda:0'), 'validation_cardinality_error': tensor(23.6154, device='cuda:0')}
|
56 |
+
{'training_loss': tensor(0.6044, device='cuda:0'), 'train_loss_ce': tensor(0.4874, device='cuda:0'), 'train_loss_bbox': tensor(0.0041, device='cuda:0'), 'train_loss_giou': tensor(0.0483, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.6047, device='cuda:0'), 'validation_loss_ce': tensor(0.5633, device='cuda:0'), 'validation_loss_bbox': tensor(0.0684, device='cuda:0'), 'validation_loss_giou': tensor(0.3497, device='cuda:0'), 'validation_cardinality_error': tensor(13.2308, device='cuda:0')}
|
57 |
+
{'training_loss': tensor(0.6582, device='cuda:0'), 'train_loss_ce': tensor(0.5104, device='cuda:0'), 'train_loss_bbox': tensor(0.0069, device='cuda:0'), 'train_loss_giou': tensor(0.0567, device='cuda:0'), 'train_cardinality_error': tensor(2., device='cuda:0'), 'validation_loss': tensor(1.3342, device='cuda:0'), 'validation_loss_ce': tensor(0.5352, device='cuda:0'), 'validation_loss_bbox': tensor(0.0504, device='cuda:0'), 'validation_loss_giou': tensor(0.2735, device='cuda:0'), 'validation_cardinality_error': tensor(8.1538, device='cuda:0')}
|
58 |
+
{'training_loss': tensor(1.0112, device='cuda:0'), 'train_loss_ce': tensor(0.5257, device='cuda:0'), 'train_loss_bbox': tensor(0.0471, device='cuda:0'), 'train_loss_giou': tensor(0.1252, device='cuda:0'), 'train_cardinality_error': tensor(3., device='cuda:0'), 'validation_loss': tensor(1.2920, device='cuda:0'), 'validation_loss_ce': tensor(0.5065, device='cuda:0'), 'validation_loss_bbox': tensor(0.0475, device='cuda:0'), 'validation_loss_giou': tensor(0.2741, device='cuda:0'), 'validation_cardinality_error': tensor(5.1538, device='cuda:0')}
|
59 |
+
{'training_loss': tensor(0.4205, device='cuda:0'), 'train_loss_ce': tensor(0.3367, device='cuda:0'), 'train_loss_bbox': tensor(0.0080, device='cuda:0'), 'train_loss_giou': tensor(0.0220, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.6009, device='cuda:0'), 'validation_loss_ce': tensor(0.4899, device='cuda:0'), 'validation_loss_bbox': tensor(0.0742, device='cuda:0'), 'validation_loss_giou': tensor(0.3700, device='cuda:0'), 'validation_cardinality_error': tensor(3.4615, device='cuda:0')}
|
60 |
+
{'training_loss': tensor(0.4747, device='cuda:0'), 'train_loss_ce': tensor(0.3562, device='cuda:0'), 'train_loss_bbox': tensor(0.0168, device='cuda:0'), 'train_loss_giou': tensor(0.0172, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.3055, device='cuda:0'), 'validation_loss_ce': tensor(0.4662, device='cuda:0'), 'validation_loss_bbox': tensor(0.0488, device='cuda:0'), 'validation_loss_giou': tensor(0.2977, device='cuda:0'), 'validation_cardinality_error': tensor(2.4615, device='cuda:0')}
|
61 |
+
{'training_loss': tensor(0.6444, device='cuda:0'), 'train_loss_ce': tensor(0.4712, device='cuda:0'), 'train_loss_bbox': tensor(0.0081, device='cuda:0'), 'train_loss_giou': tensor(0.0665, device='cuda:0'), 'train_cardinality_error': tensor(2., device='cuda:0'), 'validation_loss': tensor(1.4009, device='cuda:0'), 'validation_loss_ce': tensor(0.4472, device='cuda:0'), 'validation_loss_bbox': tensor(0.0580, device='cuda:0'), 'validation_loss_giou': tensor(0.3319, device='cuda:0'), 'validation_cardinality_error': tensor(1.6923, device='cuda:0')}
|
62 |
+
{'training_loss': tensor(0.3142, device='cuda:0'), 'train_loss_ce': tensor(0.2558, device='cuda:0'), 'train_loss_bbox': tensor(0.0038, device='cuda:0'), 'train_loss_giou': tensor(0.0198, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(1.2037, device='cuda:0'), 'validation_loss_ce': tensor(0.4325, device='cuda:0'), 'validation_loss_bbox': tensor(0.0478, device='cuda:0'), 'validation_loss_giou': tensor(0.2662, device='cuda:0'), 'validation_cardinality_error': tensor(1.7692, device='cuda:0')}
|
63 |
+
{'training_loss': tensor(1.2118, device='cuda:0'), 'train_loss_ce': tensor(0.5910, device='cuda:0'), 'train_loss_bbox': tensor(0.0650, device='cuda:0'), 'train_loss_giou': tensor(0.1480, device='cuda:0'), 'train_cardinality_error': tensor(6., device='cuda:0'), 'validation_loss': tensor(1.3762, device='cuda:0'), 'validation_loss_ce': tensor(0.4274, device='cuda:0'), 'validation_loss_bbox': tensor(0.0517, device='cuda:0'), 'validation_loss_giou': tensor(0.3451, device='cuda:0'), 'validation_cardinality_error': tensor(1.5385, device='cuda:0')}
|
64 |
+
{'training_loss': tensor(0.3037, device='cuda:0'), 'train_loss_ce': tensor(0.2012, device='cuda:0'), 'train_loss_bbox': tensor(0.0025, device='cuda:0'), 'train_loss_giou': tensor(0.0449, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.2914, device='cuda:0'), 'validation_loss_ce': tensor(0.4120, device='cuda:0'), 'validation_loss_bbox': tensor(0.0510, device='cuda:0'), 'validation_loss_giou': tensor(0.3121, device='cuda:0'), 'validation_cardinality_error': tensor(1.4615, device='cuda:0')}
|
65 |
+
{'training_loss': tensor(0.3875, device='cuda:0'), 'train_loss_ce': tensor(0.2326, device='cuda:0'), 'train_loss_bbox': tensor(0.0093, device='cuda:0'), 'train_loss_giou': tensor(0.0543, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(1.5544, device='cuda:0'), 'validation_loss_ce': tensor(0.3982, device='cuda:0'), 'validation_loss_bbox': tensor(0.0771, device='cuda:0'), 'validation_loss_giou': tensor(0.3854, device='cuda:0'), 'validation_cardinality_error': tensor(1.3846, device='cuda:0')}
|
66 |
+
{'training_loss': tensor(2.0364, device='cuda:0'), 'train_loss_ce': tensor(0.3892, device='cuda:0'), 'train_loss_bbox': tensor(0.2506, device='cuda:0'), 'train_loss_giou': tensor(0.1970, device='cuda:0'), 'train_cardinality_error': tensor(2., device='cuda:0'), 'validation_loss': tensor(1.4121, device='cuda:0'), 'validation_loss_ce': tensor(0.3892, device='cuda:0'), 'validation_loss_bbox': tensor(0.0629, device='cuda:0'), 'validation_loss_giou': tensor(0.3542, device='cuda:0'), 'validation_cardinality_error': tensor(1.2308, device='cuda:0')}
|
67 |
+
{'training_loss': tensor(0.3154, device='cuda:0'), 'train_loss_ce': tensor(0.2601, device='cuda:0'), 'train_loss_bbox': tensor(0.0058, device='cuda:0'), 'train_loss_giou': tensor(0.0131, device='cuda:0'), 'train_cardinality_error': tensor(2., device='cuda:0'), 'validation_loss': tensor(1.1014, device='cuda:0'), 'validation_loss_ce': tensor(0.3505, device='cuda:0'), 'validation_loss_bbox': tensor(0.0466, device='cuda:0'), 'validation_loss_giou': tensor(0.2590, device='cuda:0'), 'validation_cardinality_error': tensor(1.0769, device='cuda:0')}
|
68 |
+
{'training_loss': tensor(0.3392, device='cuda:0'), 'train_loss_ce': tensor(0.1534, device='cuda:0'), 'train_loss_bbox': tensor(0.0219, device='cuda:0'), 'train_loss_giou': tensor(0.0381, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(1.1544, device='cuda:0'), 'validation_loss_ce': tensor(0.3387, device='cuda:0'), 'validation_loss_bbox': tensor(0.0510, device='cuda:0'), 'validation_loss_giou': tensor(0.2803, device='cuda:0'), 'validation_cardinality_error': tensor(0.9231, device='cuda:0')}
|
69 |
+
{'training_loss': tensor(0.3263, device='cuda:0'), 'train_loss_ce': tensor(0.2588, device='cuda:0'), 'train_loss_bbox': tensor(0.0077, device='cuda:0'), 'train_loss_giou': tensor(0.0145, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(1.1032, device='cuda:0'), 'validation_loss_ce': tensor(0.3281, device='cuda:0'), 'validation_loss_bbox': tensor(0.0441, device='cuda:0'), 'validation_loss_giou': tensor(0.2773, device='cuda:0'), 'validation_cardinality_error': tensor(0.7692, device='cuda:0')}
|
70 |
+
{'training_loss': tensor(0.1587, device='cuda:0'), 'train_loss_ce': tensor(0.1014, device='cuda:0'), 'train_loss_bbox': tensor(0.0073, device='cuda:0'), 'train_loss_giou': tensor(0.0105, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(1.1960, device='cuda:0'), 'validation_loss_ce': tensor(0.3185, device='cuda:0'), 'validation_loss_bbox': tensor(0.0570, device='cuda:0'), 'validation_loss_giou': tensor(0.2962, device='cuda:0'), 'validation_cardinality_error': tensor(0.9231, device='cuda:0')}
|
71 |
+
{'training_loss': tensor(0.2787, device='cuda:0'), 'train_loss_ce': tensor(0.1191, device='cuda:0'), 'train_loss_bbox': tensor(0.0105, device='cuda:0'), 'train_loss_giou': tensor(0.0536, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.9316, device='cuda:0'), 'validation_loss_ce': tensor(0.2925, device='cuda:0'), 'validation_loss_bbox': tensor(0.0291, device='cuda:0'), 'validation_loss_giou': tensor(0.2469, device='cuda:0'), 'validation_cardinality_error': tensor(1.0769, device='cuda:0')}
|
72 |
+
{'training_loss': tensor(0.1896, device='cuda:0'), 'train_loss_ce': tensor(0.0810, device='cuda:0'), 'train_loss_bbox': tensor(0.0107, device='cuda:0'), 'train_loss_giou': tensor(0.0276, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.8570, device='cuda:0'), 'validation_loss_ce': tensor(0.2889, device='cuda:0'), 'validation_loss_bbox': tensor(0.0264, device='cuda:0'), 'validation_loss_giou': tensor(0.2180, device='cuda:0'), 'validation_cardinality_error': tensor(1.1538, device='cuda:0')}
|
73 |
+
```
|
74 |
+
|
75 |
+
## Examples
|
76 |
+
{'size': tensor([ 800, 1066]), 'image_id': tensor([0]), 'class_labels': tensor([0]), 'boxes': tensor([[0.5955, 0.5811, 0.2202, 0.3561]]), 'area': tensor([3681.5083]), 'iscrowd': tensor([0]), 'orig_size': tensor([1536, 2048])}
|
77 |
+
|
78 |
+
![Example](./example.png)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|