npvinHnivqn commited on
Commit
94b40f6
1 Parent(s): 5abe299

Update README file

Browse files
Files changed (1) hide show
  1. README.md +73 -194
README.md CHANGED
@@ -3,197 +3,76 @@ library_name: transformers
3
  tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
3
  tags: []
4
  ---
5
 
6
+ ## Original result
7
+ ```
8
+ IoU metric: bbox
9
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.042
10
+ Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.058
11
+ Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.041
12
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.128
13
+ Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.093
14
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
15
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.062
16
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.250
17
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.470
18
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.393
19
+ Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.561
20
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
21
+ ```
22
+
23
+ ## After training result
24
+ ```
25
+ IoU metric: bbox
26
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.575
27
+ Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.744
28
+ Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.661
29
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.534
30
+ Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.767
31
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
32
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.200
33
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.648
34
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.694
35
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.574
36
+ Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.835
37
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
38
+ ```
39
+
40
+ ## Config
41
+ - dataset: NIH
42
+ - original model: facebook/detr-resnet-50
43
+ - lr: 1e-05
44
+ - dropout_rate: 0.1
45
+ - weight_decay: 0.05
46
+ - max_epochs: 20
47
+ - train samples: 61
48
+
49
+ ## Logging
50
+ ### Training process
51
+ ```
52
+ {'validation_loss': tensor(2.8403, device='cuda:0'), 'validation_loss_ce': tensor(0.7536, device='cuda:0'), 'validation_loss_bbox': tensor(0.1414, device='cuda:0'), 'validation_loss_giou': tensor(0.6899, device='cuda:0'), 'validation_cardinality_error': tensor(88.5000, device='cuda:0')}
53
+ {'training_loss': tensor(0.9331, device='cuda:0'), 'train_loss_ce': tensor(0.7954, device='cuda:0'), 'train_loss_bbox': tensor(0.0169, device='cuda:0'), 'train_loss_giou': tensor(0.0266, device='cuda:0'), 'train_cardinality_error': tensor(73., device='cuda:0'), 'validation_loss': tensor(1.9357, device='cuda:0'), 'validation_loss_ce': tensor(0.7015, device='cuda:0'), 'validation_loss_bbox': tensor(0.0786, device='cuda:0'), 'validation_loss_giou': tensor(0.4205, device='cuda:0'), 'validation_cardinality_error': tensor(63., device='cuda:0')}
54
+ {'training_loss': tensor(0.7740, device='cuda:0'), 'train_loss_ce': tensor(0.6548, device='cuda:0'), 'train_loss_bbox': tensor(0.0032, device='cuda:0'), 'train_loss_giou': tensor(0.0516, device='cuda:0'), 'train_cardinality_error': tensor(15., device='cuda:0'), 'validation_loss': tensor(1.6569, device='cuda:0'), 'validation_loss_ce': tensor(0.6407, device='cuda:0'), 'validation_loss_bbox': tensor(0.0773, device='cuda:0'), 'validation_loss_giou': tensor(0.3149, device='cuda:0'), 'validation_cardinality_error': tensor(38.3846, device='cuda:0')}
55
+ {'training_loss': tensor(0.8202, device='cuda:0'), 'train_loss_ce': tensor(0.5803, device='cuda:0'), 'train_loss_bbox': tensor(0.0250, device='cuda:0'), 'train_loss_giou': tensor(0.0574, device='cuda:0'), 'train_cardinality_error': tensor(19., device='cuda:0'), 'validation_loss': tensor(1.5251, device='cuda:0'), 'validation_loss_ce': tensor(0.6084, device='cuda:0'), 'validation_loss_bbox': tensor(0.0518, device='cuda:0'), 'validation_loss_giou': tensor(0.3288, device='cuda:0'), 'validation_cardinality_error': tensor(23.6154, device='cuda:0')}
56
+ {'training_loss': tensor(0.6044, device='cuda:0'), 'train_loss_ce': tensor(0.4874, device='cuda:0'), 'train_loss_bbox': tensor(0.0041, device='cuda:0'), 'train_loss_giou': tensor(0.0483, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.6047, device='cuda:0'), 'validation_loss_ce': tensor(0.5633, device='cuda:0'), 'validation_loss_bbox': tensor(0.0684, device='cuda:0'), 'validation_loss_giou': tensor(0.3497, device='cuda:0'), 'validation_cardinality_error': tensor(13.2308, device='cuda:0')}
57
+ {'training_loss': tensor(0.6582, device='cuda:0'), 'train_loss_ce': tensor(0.5104, device='cuda:0'), 'train_loss_bbox': tensor(0.0069, device='cuda:0'), 'train_loss_giou': tensor(0.0567, device='cuda:0'), 'train_cardinality_error': tensor(2., device='cuda:0'), 'validation_loss': tensor(1.3342, device='cuda:0'), 'validation_loss_ce': tensor(0.5352, device='cuda:0'), 'validation_loss_bbox': tensor(0.0504, device='cuda:0'), 'validation_loss_giou': tensor(0.2735, device='cuda:0'), 'validation_cardinality_error': tensor(8.1538, device='cuda:0')}
58
+ {'training_loss': tensor(1.0112, device='cuda:0'), 'train_loss_ce': tensor(0.5257, device='cuda:0'), 'train_loss_bbox': tensor(0.0471, device='cuda:0'), 'train_loss_giou': tensor(0.1252, device='cuda:0'), 'train_cardinality_error': tensor(3., device='cuda:0'), 'validation_loss': tensor(1.2920, device='cuda:0'), 'validation_loss_ce': tensor(0.5065, device='cuda:0'), 'validation_loss_bbox': tensor(0.0475, device='cuda:0'), 'validation_loss_giou': tensor(0.2741, device='cuda:0'), 'validation_cardinality_error': tensor(5.1538, device='cuda:0')}
59
+ {'training_loss': tensor(0.4205, device='cuda:0'), 'train_loss_ce': tensor(0.3367, device='cuda:0'), 'train_loss_bbox': tensor(0.0080, device='cuda:0'), 'train_loss_giou': tensor(0.0220, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.6009, device='cuda:0'), 'validation_loss_ce': tensor(0.4899, device='cuda:0'), 'validation_loss_bbox': tensor(0.0742, device='cuda:0'), 'validation_loss_giou': tensor(0.3700, device='cuda:0'), 'validation_cardinality_error': tensor(3.4615, device='cuda:0')}
60
+ {'training_loss': tensor(0.4747, device='cuda:0'), 'train_loss_ce': tensor(0.3562, device='cuda:0'), 'train_loss_bbox': tensor(0.0168, device='cuda:0'), 'train_loss_giou': tensor(0.0172, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.3055, device='cuda:0'), 'validation_loss_ce': tensor(0.4662, device='cuda:0'), 'validation_loss_bbox': tensor(0.0488, device='cuda:0'), 'validation_loss_giou': tensor(0.2977, device='cuda:0'), 'validation_cardinality_error': tensor(2.4615, device='cuda:0')}
61
+ {'training_loss': tensor(0.6444, device='cuda:0'), 'train_loss_ce': tensor(0.4712, device='cuda:0'), 'train_loss_bbox': tensor(0.0081, device='cuda:0'), 'train_loss_giou': tensor(0.0665, device='cuda:0'), 'train_cardinality_error': tensor(2., device='cuda:0'), 'validation_loss': tensor(1.4009, device='cuda:0'), 'validation_loss_ce': tensor(0.4472, device='cuda:0'), 'validation_loss_bbox': tensor(0.0580, device='cuda:0'), 'validation_loss_giou': tensor(0.3319, device='cuda:0'), 'validation_cardinality_error': tensor(1.6923, device='cuda:0')}
62
+ {'training_loss': tensor(0.3142, device='cuda:0'), 'train_loss_ce': tensor(0.2558, device='cuda:0'), 'train_loss_bbox': tensor(0.0038, device='cuda:0'), 'train_loss_giou': tensor(0.0198, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(1.2037, device='cuda:0'), 'validation_loss_ce': tensor(0.4325, device='cuda:0'), 'validation_loss_bbox': tensor(0.0478, device='cuda:0'), 'validation_loss_giou': tensor(0.2662, device='cuda:0'), 'validation_cardinality_error': tensor(1.7692, device='cuda:0')}
63
+ {'training_loss': tensor(1.2118, device='cuda:0'), 'train_loss_ce': tensor(0.5910, device='cuda:0'), 'train_loss_bbox': tensor(0.0650, device='cuda:0'), 'train_loss_giou': tensor(0.1480, device='cuda:0'), 'train_cardinality_error': tensor(6., device='cuda:0'), 'validation_loss': tensor(1.3762, device='cuda:0'), 'validation_loss_ce': tensor(0.4274, device='cuda:0'), 'validation_loss_bbox': tensor(0.0517, device='cuda:0'), 'validation_loss_giou': tensor(0.3451, device='cuda:0'), 'validation_cardinality_error': tensor(1.5385, device='cuda:0')}
64
+ {'training_loss': tensor(0.3037, device='cuda:0'), 'train_loss_ce': tensor(0.2012, device='cuda:0'), 'train_loss_bbox': tensor(0.0025, device='cuda:0'), 'train_loss_giou': tensor(0.0449, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.2914, device='cuda:0'), 'validation_loss_ce': tensor(0.4120, device='cuda:0'), 'validation_loss_bbox': tensor(0.0510, device='cuda:0'), 'validation_loss_giou': tensor(0.3121, device='cuda:0'), 'validation_cardinality_error': tensor(1.4615, device='cuda:0')}
65
+ {'training_loss': tensor(0.3875, device='cuda:0'), 'train_loss_ce': tensor(0.2326, device='cuda:0'), 'train_loss_bbox': tensor(0.0093, device='cuda:0'), 'train_loss_giou': tensor(0.0543, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(1.5544, device='cuda:0'), 'validation_loss_ce': tensor(0.3982, device='cuda:0'), 'validation_loss_bbox': tensor(0.0771, device='cuda:0'), 'validation_loss_giou': tensor(0.3854, device='cuda:0'), 'validation_cardinality_error': tensor(1.3846, device='cuda:0')}
66
+ {'training_loss': tensor(2.0364, device='cuda:0'), 'train_loss_ce': tensor(0.3892, device='cuda:0'), 'train_loss_bbox': tensor(0.2506, device='cuda:0'), 'train_loss_giou': tensor(0.1970, device='cuda:0'), 'train_cardinality_error': tensor(2., device='cuda:0'), 'validation_loss': tensor(1.4121, device='cuda:0'), 'validation_loss_ce': tensor(0.3892, device='cuda:0'), 'validation_loss_bbox': tensor(0.0629, device='cuda:0'), 'validation_loss_giou': tensor(0.3542, device='cuda:0'), 'validation_cardinality_error': tensor(1.2308, device='cuda:0')}
67
+ {'training_loss': tensor(0.3154, device='cuda:0'), 'train_loss_ce': tensor(0.2601, device='cuda:0'), 'train_loss_bbox': tensor(0.0058, device='cuda:0'), 'train_loss_giou': tensor(0.0131, device='cuda:0'), 'train_cardinality_error': tensor(2., device='cuda:0'), 'validation_loss': tensor(1.1014, device='cuda:0'), 'validation_loss_ce': tensor(0.3505, device='cuda:0'), 'validation_loss_bbox': tensor(0.0466, device='cuda:0'), 'validation_loss_giou': tensor(0.2590, device='cuda:0'), 'validation_cardinality_error': tensor(1.0769, device='cuda:0')}
68
+ {'training_loss': tensor(0.3392, device='cuda:0'), 'train_loss_ce': tensor(0.1534, device='cuda:0'), 'train_loss_bbox': tensor(0.0219, device='cuda:0'), 'train_loss_giou': tensor(0.0381, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(1.1544, device='cuda:0'), 'validation_loss_ce': tensor(0.3387, device='cuda:0'), 'validation_loss_bbox': tensor(0.0510, device='cuda:0'), 'validation_loss_giou': tensor(0.2803, device='cuda:0'), 'validation_cardinality_error': tensor(0.9231, device='cuda:0')}
69
+ {'training_loss': tensor(0.3263, device='cuda:0'), 'train_loss_ce': tensor(0.2588, device='cuda:0'), 'train_loss_bbox': tensor(0.0077, device='cuda:0'), 'train_loss_giou': tensor(0.0145, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(1.1032, device='cuda:0'), 'validation_loss_ce': tensor(0.3281, device='cuda:0'), 'validation_loss_bbox': tensor(0.0441, device='cuda:0'), 'validation_loss_giou': tensor(0.2773, device='cuda:0'), 'validation_cardinality_error': tensor(0.7692, device='cuda:0')}
70
+ {'training_loss': tensor(0.1587, device='cuda:0'), 'train_loss_ce': tensor(0.1014, device='cuda:0'), 'train_loss_bbox': tensor(0.0073, device='cuda:0'), 'train_loss_giou': tensor(0.0105, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(1.1960, device='cuda:0'), 'validation_loss_ce': tensor(0.3185, device='cuda:0'), 'validation_loss_bbox': tensor(0.0570, device='cuda:0'), 'validation_loss_giou': tensor(0.2962, device='cuda:0'), 'validation_cardinality_error': tensor(0.9231, device='cuda:0')}
71
+ {'training_loss': tensor(0.2787, device='cuda:0'), 'train_loss_ce': tensor(0.1191, device='cuda:0'), 'train_loss_bbox': tensor(0.0105, device='cuda:0'), 'train_loss_giou': tensor(0.0536, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.9316, device='cuda:0'), 'validation_loss_ce': tensor(0.2925, device='cuda:0'), 'validation_loss_bbox': tensor(0.0291, device='cuda:0'), 'validation_loss_giou': tensor(0.2469, device='cuda:0'), 'validation_cardinality_error': tensor(1.0769, device='cuda:0')}
72
+ {'training_loss': tensor(0.1896, device='cuda:0'), 'train_loss_ce': tensor(0.0810, device='cuda:0'), 'train_loss_bbox': tensor(0.0107, device='cuda:0'), 'train_loss_giou': tensor(0.0276, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.8570, device='cuda:0'), 'validation_loss_ce': tensor(0.2889, device='cuda:0'), 'validation_loss_bbox': tensor(0.0264, device='cuda:0'), 'validation_loss_giou': tensor(0.2180, device='cuda:0'), 'validation_cardinality_error': tensor(1.1538, device='cuda:0')}
73
+ ```
74
+
75
+ ## Examples
76
+ {'size': tensor([ 800, 1066]), 'image_id': tensor([0]), 'class_labels': tensor([0]), 'boxes': tensor([[0.5955, 0.5811, 0.2202, 0.3561]]), 'area': tensor([3681.5083]), 'iscrowd': tensor([0]), 'orig_size': tensor([1536, 2048])}
77
+
78
+ ![Example](./example.png)