npvinHnivqn
commited on
Commit
•
e5abc24
1
Parent(s):
dfd40fd
Update README file
Browse files
README.md
CHANGED
@@ -6,34 +6,34 @@ tags: []
|
|
6 |
## Original result
|
7 |
```
|
8 |
IoU metric: bbox
|
9 |
-
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.
|
10 |
-
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.
|
11 |
-
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.
|
12 |
-
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.
|
13 |
-
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.
|
14 |
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
|
15 |
-
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.
|
16 |
-
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.
|
17 |
-
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.
|
18 |
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.393
|
19 |
-
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.
|
20 |
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
|
21 |
```
|
22 |
|
23 |
## After training result
|
24 |
```
|
25 |
IoU metric: bbox
|
26 |
-
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.
|
27 |
-
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.
|
28 |
-
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.
|
29 |
-
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.
|
30 |
-
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.
|
31 |
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
|
32 |
-
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.
|
33 |
-
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.
|
34 |
-
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.
|
35 |
-
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.
|
36 |
-
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.
|
37 |
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
|
38 |
```
|
39 |
|
@@ -43,53 +43,43 @@ IoU metric: bbox
|
|
43 |
- lr: 5e-06
|
44 |
- dropout_rate: 0.1
|
45 |
- weight_decay: 0.05
|
46 |
-
- max_epochs:
|
47 |
- train samples: 61
|
48 |
|
49 |
## Logging
|
50 |
### Training process
|
51 |
```
|
52 |
-
{'validation_loss': tensor(2.
|
53 |
-
{'training_loss': tensor(0.
|
54 |
-
{'training_loss': tensor(
|
55 |
-
{'training_loss': tensor(
|
56 |
-
{'training_loss': tensor(0.
|
57 |
-
{'training_loss': tensor(
|
58 |
-
{'training_loss': tensor(0.
|
59 |
-
{'training_loss': tensor(0.
|
60 |
-
{'training_loss': tensor(
|
61 |
-
{'training_loss': tensor(
|
62 |
-
{'training_loss': tensor(0.
|
63 |
-
{'training_loss': tensor(0.
|
64 |
-
{'training_loss': tensor(0.
|
65 |
-
{'training_loss': tensor(0.
|
66 |
-
{'training_loss': tensor(0.
|
67 |
-
{'training_loss': tensor(0.
|
68 |
-
{'training_loss': tensor(0.
|
69 |
-
{'training_loss': tensor(0.
|
70 |
-
{'training_loss': tensor(0.
|
71 |
-
{'training_loss': tensor(0.
|
72 |
-
{'training_loss': tensor(0.
|
73 |
-
{'training_loss': tensor(0.
|
74 |
-
{'training_loss': tensor(0.
|
75 |
-
{'training_loss': tensor(0.
|
76 |
-
{'training_loss': tensor(0.
|
77 |
-
{'training_loss': tensor(0.
|
78 |
-
{'training_loss': tensor(0.
|
79 |
-
{'training_loss': tensor(0.
|
80 |
-
{'training_loss': tensor(0.
|
81 |
-
{'training_loss': tensor(0.
|
82 |
-
{'training_loss': tensor(0.
|
83 |
-
{'training_loss': tensor(0.2556, device='cuda:0'), 'train_loss_ce': tensor(0.1958, device='cuda:0'), 'train_loss_bbox': tensor(0.0075, device='cuda:0'), 'train_loss_giou': tensor(0.0110, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.9517, device='cuda:0'), 'validation_loss_ce': tensor(0.3761, device='cuda:0'), 'validation_loss_bbox': tensor(0.0307, device='cuda:0'), 'validation_loss_giou': tensor(0.2111, device='cuda:0'), 'validation_cardinality_error': tensor(1.8462, device='cuda:0')}
|
84 |
-
{'training_loss': tensor(0.2276, device='cuda:0'), 'train_loss_ce': tensor(0.1822, device='cuda:0'), 'train_loss_bbox': tensor(0.0026, device='cuda:0'), 'train_loss_giou': tensor(0.0163, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.9540, device='cuda:0'), 'validation_loss_ce': tensor(0.3651, device='cuda:0'), 'validation_loss_bbox': tensor(0.0308, device='cuda:0'), 'validation_loss_giou': tensor(0.2175, device='cuda:0'), 'validation_cardinality_error': tensor(1.7692, device='cuda:0')}
|
85 |
-
{'training_loss': tensor(0.2031, device='cuda:0'), 'train_loss_ce': tensor(0.1681, device='cuda:0'), 'train_loss_bbox': tensor(0.0015, device='cuda:0'), 'train_loss_giou': tensor(0.0138, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.9900, device='cuda:0'), 'validation_loss_ce': tensor(0.3618, device='cuda:0'), 'validation_loss_bbox': tensor(0.0332, device='cuda:0'), 'validation_loss_giou': tensor(0.2310, device='cuda:0'), 'validation_cardinality_error': tensor(1.4615, device='cuda:0')}
|
86 |
-
{'training_loss': tensor(0.6779, device='cuda:0'), 'train_loss_ce': tensor(0.4923, device='cuda:0'), 'train_loss_bbox': tensor(0.0074, device='cuda:0'), 'train_loss_giou': tensor(0.0742, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.9209, device='cuda:0'), 'validation_loss_ce': tensor(0.3567, device='cuda:0'), 'validation_loss_bbox': tensor(0.0315, device='cuda:0'), 'validation_loss_giou': tensor(0.2033, device='cuda:0'), 'validation_cardinality_error': tensor(1.4615, device='cuda:0')}
|
87 |
-
{'training_loss': tensor(2.5319, device='cuda:0'), 'train_loss_ce': tensor(0.4393, device='cuda:0'), 'train_loss_bbox': tensor(0.1542, device='cuda:0'), 'train_loss_giou': tensor(0.6607, device='cuda:0'), 'train_cardinality_error': tensor(2., device='cuda:0'), 'validation_loss': tensor(1.0136, device='cuda:0'), 'validation_loss_ce': tensor(0.3559, device='cuda:0'), 'validation_loss_bbox': tensor(0.0335, device='cuda:0'), 'validation_loss_giou': tensor(0.2451, device='cuda:0'), 'validation_cardinality_error': tensor(1.4615, device='cuda:0')}
|
88 |
-
{'training_loss': tensor(0.2293, device='cuda:0'), 'train_loss_ce': tensor(0.1921, device='cuda:0'), 'train_loss_bbox': tensor(0.0033, device='cuda:0'), 'train_loss_giou': tensor(0.0104, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.8533, device='cuda:0'), 'validation_loss_ce': tensor(0.3347, device='cuda:0'), 'validation_loss_bbox': tensor(0.0281, device='cuda:0'), 'validation_loss_giou': tensor(0.1891, device='cuda:0'), 'validation_cardinality_error': tensor(1.3846, device='cuda:0')}
|
89 |
-
{'training_loss': tensor(0.1696, device='cuda:0'), 'train_loss_ce': tensor(0.1435, device='cuda:0'), 'train_loss_bbox': tensor(0.0009, device='cuda:0'), 'train_loss_giou': tensor(0.0108, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.9884, device='cuda:0'), 'validation_loss_ce': tensor(0.3382, device='cuda:0'), 'validation_loss_bbox': tensor(0.0360, device='cuda:0'), 'validation_loss_giou': tensor(0.2352, device='cuda:0'), 'validation_cardinality_error': tensor(1.3846, device='cuda:0')}
|
90 |
-
{'training_loss': tensor(0.5900, device='cuda:0'), 'train_loss_ce': tensor(0.3056, device='cuda:0'), 'train_loss_bbox': tensor(0.0299, device='cuda:0'), 'train_loss_giou': tensor(0.0675, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.8545, device='cuda:0'), 'validation_loss_ce': tensor(0.3202, device='cuda:0'), 'validation_loss_bbox': tensor(0.0306, device='cuda:0'), 'validation_loss_giou': tensor(0.1908, device='cuda:0'), 'validation_cardinality_error': tensor(1.3077, device='cuda:0')}
|
91 |
-
{'training_loss': tensor(0.1700, device='cuda:0'), 'train_loss_ce': tensor(0.1408, device='cuda:0'), 'train_loss_bbox': tensor(0.0015, device='cuda:0'), 'train_loss_giou': tensor(0.0109, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.8922, device='cuda:0'), 'validation_loss_ce': tensor(0.3169, device='cuda:0'), 'validation_loss_bbox': tensor(0.0319, device='cuda:0'), 'validation_loss_giou': tensor(0.2080, device='cuda:0'), 'validation_cardinality_error': tensor(1.3846, device='cuda:0')}
|
92 |
-
{'training_loss': tensor(0.4513, device='cuda:0'), 'train_loss_ce': tensor(0.3160, device='cuda:0'), 'train_loss_bbox': tensor(0.0127, device='cuda:0'), 'train_loss_giou': tensor(0.0360, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.8982, device='cuda:0'), 'validation_loss_ce': tensor(0.3177, device='cuda:0'), 'validation_loss_bbox': tensor(0.0301, device='cuda:0'), 'validation_loss_giou': tensor(0.2150, device='cuda:0'), 'validation_cardinality_error': tensor(1.3077, device='cuda:0')}
|
93 |
```
|
94 |
|
95 |
## Examples
|
|
|
6 |
## Original result
|
7 |
```
|
8 |
IoU metric: bbox
|
9 |
+
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.018
|
10 |
+
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.028
|
11 |
+
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.018
|
12 |
+
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.061
|
13 |
+
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.031
|
14 |
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
|
15 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.040
|
16 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.136
|
17 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.468
|
18 |
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.393
|
19 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.557
|
20 |
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
|
21 |
```
|
22 |
|
23 |
## After training result
|
24 |
```
|
25 |
IoU metric: bbox
|
26 |
+
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.581
|
27 |
+
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.740
|
28 |
+
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.661
|
29 |
+
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.580
|
30 |
+
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.722
|
31 |
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
|
32 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.216
|
33 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.686
|
34 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.704
|
35 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.615
|
36 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.809
|
37 |
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
|
38 |
```
|
39 |
|
|
|
43 |
- lr: 5e-06
|
44 |
- dropout_rate: 0.1
|
45 |
- weight_decay: 0.05
|
46 |
+
- max_epochs: 30
|
47 |
- train samples: 61
|
48 |
|
49 |
## Logging
|
50 |
### Training process
|
51 |
```
|
52 |
+
{'validation_loss': tensor(2.3278, device='cuda:0'), 'validation_loss_ce': tensor(0.8063, device='cuda:0'), 'validation_loss_bbox': tensor(0.1393, device='cuda:0'), 'validation_loss_giou': tensor(0.4124, device='cuda:0'), 'validation_cardinality_error': tensor(95.7500, device='cuda:0')}
|
53 |
+
{'training_loss': tensor(0.9300, device='cuda:0'), 'train_loss_ce': tensor(0.8402, device='cuda:0'), 'train_loss_bbox': tensor(0.0106, device='cuda:0'), 'train_loss_giou': tensor(0.0183, device='cuda:0'), 'train_cardinality_error': tensor(99., device='cuda:0'), 'validation_loss': tensor(1.6376, device='cuda:0'), 'validation_loss_ce': tensor(0.7839, device='cuda:0'), 'validation_loss_bbox': tensor(0.0598, device='cuda:0'), 'validation_loss_giou': tensor(0.2774, device='cuda:0'), 'validation_cardinality_error': tensor(92.4615, device='cuda:0')}
|
54 |
+
{'training_loss': tensor(0.8859, device='cuda:0'), 'train_loss_ce': tensor(0.7299, device='cuda:0'), 'train_loss_bbox': tensor(0.0061, device='cuda:0'), 'train_loss_giou': tensor(0.0626, device='cuda:0'), 'train_cardinality_error': tensor(85., device='cuda:0'), 'validation_loss': tensor(1.4878, device='cuda:0'), 'validation_loss_ce': tensor(0.7549, device='cuda:0'), 'validation_loss_bbox': tensor(0.0428, device='cuda:0'), 'validation_loss_giou': tensor(0.2594, device='cuda:0'), 'validation_cardinality_error': tensor(87.4615, device='cuda:0')}
|
55 |
+
{'training_loss': tensor(0.9309, device='cuda:0'), 'train_loss_ce': tensor(0.6880, device='cuda:0'), 'train_loss_bbox': tensor(0.0039, device='cuda:0'), 'train_loss_giou': tensor(0.1115, device='cuda:0'), 'train_cardinality_error': tensor(37., device='cuda:0'), 'validation_loss': tensor(1.4015, device='cuda:0'), 'validation_loss_ce': tensor(0.7223, device='cuda:0'), 'validation_loss_bbox': tensor(0.0418, device='cuda:0'), 'validation_loss_giou': tensor(0.2352, device='cuda:0'), 'validation_cardinality_error': tensor(75.2308, device='cuda:0')}
|
56 |
+
{'training_loss': tensor(0.9357, device='cuda:0'), 'train_loss_ce': tensor(0.6722, device='cuda:0'), 'train_loss_bbox': tensor(0.0161, device='cuda:0'), 'train_loss_giou': tensor(0.0915, device='cuda:0'), 'train_cardinality_error': tensor(50., device='cuda:0'), 'validation_loss': tensor(1.2880, device='cuda:0'), 'validation_loss_ce': tensor(0.6971, device='cuda:0'), 'validation_loss_bbox': tensor(0.0326, device='cuda:0'), 'validation_loss_giou': tensor(0.2139, device='cuda:0'), 'validation_cardinality_error': tensor(61.9231, device='cuda:0')}
|
57 |
+
{'training_loss': tensor(1.0329, device='cuda:0'), 'train_loss_ce': tensor(0.6268, device='cuda:0'), 'train_loss_bbox': tensor(0.0259, device='cuda:0'), 'train_loss_giou': tensor(0.1382, device='cuda:0'), 'train_cardinality_error': tensor(60., device='cuda:0'), 'validation_loss': tensor(1.3270, device='cuda:0'), 'validation_loss_ce': tensor(0.6700, device='cuda:0'), 'validation_loss_bbox': tensor(0.0406, device='cuda:0'), 'validation_loss_giou': tensor(0.2270, device='cuda:0'), 'validation_cardinality_error': tensor(44., device='cuda:0')}
|
58 |
+
{'training_loss': tensor(0.6385, device='cuda:0'), 'train_loss_ce': tensor(0.6109, device='cuda:0'), 'train_loss_bbox': tensor(0.0034, device='cuda:0'), 'train_loss_giou': tensor(0.0053, device='cuda:0'), 'train_cardinality_error': tensor(16., device='cuda:0'), 'validation_loss': tensor(1.2555, device='cuda:0'), 'validation_loss_ce': tensor(0.6517, device='cuda:0'), 'validation_loss_bbox': tensor(0.0333, device='cuda:0'), 'validation_loss_giou': tensor(0.2188, device='cuda:0'), 'validation_cardinality_error': tensor(35.3846, device='cuda:0')}
|
59 |
+
{'training_loss': tensor(0.9198, device='cuda:0'), 'train_loss_ce': tensor(0.6531, device='cuda:0'), 'train_loss_bbox': tensor(0.0121, device='cuda:0'), 'train_loss_giou': tensor(0.1032, device='cuda:0'), 'train_cardinality_error': tensor(48., device='cuda:0'), 'validation_loss': tensor(1.1704, device='cuda:0'), 'validation_loss_ce': tensor(0.6298, device='cuda:0'), 'validation_loss_bbox': tensor(0.0305, device='cuda:0'), 'validation_loss_giou': tensor(0.1940, device='cuda:0'), 'validation_cardinality_error': tensor(23.8462, device='cuda:0')}
|
60 |
+
{'training_loss': tensor(1.2434, device='cuda:0'), 'train_loss_ce': tensor(0.6117, device='cuda:0'), 'train_loss_bbox': tensor(0.0905, device='cuda:0'), 'train_loss_giou': tensor(0.0897, device='cuda:0'), 'train_cardinality_error': tensor(14., device='cuda:0'), 'validation_loss': tensor(1.1164, device='cuda:0'), 'validation_loss_ce': tensor(0.6053, device='cuda:0'), 'validation_loss_bbox': tensor(0.0269, device='cuda:0'), 'validation_loss_giou': tensor(0.1882, device='cuda:0'), 'validation_cardinality_error': tensor(16.9231, device='cuda:0')}
|
61 |
+
{'training_loss': tensor(0.6062, device='cuda:0'), 'train_loss_ce': tensor(0.5261, device='cuda:0'), 'train_loss_bbox': tensor(0.0094, device='cuda:0'), 'train_loss_giou': tensor(0.0166, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.0347, device='cuda:0'), 'validation_loss_ce': tensor(0.5863, device='cuda:0'), 'validation_loss_bbox': tensor(0.0253, device='cuda:0'), 'validation_loss_giou': tensor(0.1610, device='cuda:0'), 'validation_cardinality_error': tensor(12.1538, device='cuda:0')}
|
62 |
+
{'training_loss': tensor(0.9271, device='cuda:0'), 'train_loss_ce': tensor(0.5947, device='cuda:0'), 'train_loss_bbox': tensor(0.0129, device='cuda:0'), 'train_loss_giou': tensor(0.1340, device='cuda:0'), 'train_cardinality_error': tensor(5., device='cuda:0'), 'validation_loss': tensor(1.0357, device='cuda:0'), 'validation_loss_ce': tensor(0.5681, device='cuda:0'), 'validation_loss_bbox': tensor(0.0275, device='cuda:0'), 'validation_loss_giou': tensor(0.1649, device='cuda:0'), 'validation_cardinality_error': tensor(9.7692, device='cuda:0')}
|
63 |
+
{'training_loss': tensor(0.5119, device='cuda:0'), 'train_loss_ce': tensor(0.4507, device='cuda:0'), 'train_loss_bbox': tensor(0.0033, device='cuda:0'), 'train_loss_giou': tensor(0.0225, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.0390, device='cuda:0'), 'validation_loss_ce': tensor(0.5564, device='cuda:0'), 'validation_loss_bbox': tensor(0.0279, device='cuda:0'), 'validation_loss_giou': tensor(0.1716, device='cuda:0'), 'validation_cardinality_error': tensor(8.4615, device='cuda:0')}
|
64 |
+
{'training_loss': tensor(0.5317, device='cuda:0'), 'train_loss_ce': tensor(0.4902, device='cuda:0'), 'train_loss_bbox': tensor(0.0038, device='cuda:0'), 'train_loss_giou': tensor(0.0112, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.1582, device='cuda:0'), 'validation_loss_ce': tensor(0.5454, device='cuda:0'), 'validation_loss_bbox': tensor(0.0349, device='cuda:0'), 'validation_loss_giou': tensor(0.2191, device='cuda:0'), 'validation_cardinality_error': tensor(7.7692, device='cuda:0')}
|
65 |
+
{'training_loss': tensor(0.8191, device='cuda:0'), 'train_loss_ce': tensor(0.5887, device='cuda:0'), 'train_loss_bbox': tensor(0.0254, device='cuda:0'), 'train_loss_giou': tensor(0.0517, device='cuda:0'), 'train_cardinality_error': tensor(4., device='cuda:0'), 'validation_loss': tensor(1.1191, device='cuda:0'), 'validation_loss_ce': tensor(0.5417, device='cuda:0'), 'validation_loss_bbox': tensor(0.0324, device='cuda:0'), 'validation_loss_giou': tensor(0.2078, device='cuda:0'), 'validation_cardinality_error': tensor(6.2308, device='cuda:0')}
|
66 |
+
{'training_loss': tensor(0.5972, device='cuda:0'), 'train_loss_ce': tensor(0.5358, device='cuda:0'), 'train_loss_bbox': tensor(0.0051, device='cuda:0'), 'train_loss_giou': tensor(0.0180, device='cuda:0'), 'train_cardinality_error': tensor(2., device='cuda:0'), 'validation_loss': tensor(0.9988, device='cuda:0'), 'validation_loss_ce': tensor(0.5194, device='cuda:0'), 'validation_loss_bbox': tensor(0.0263, device='cuda:0'), 'validation_loss_giou': tensor(0.1740, device='cuda:0'), 'validation_cardinality_error': tensor(5.6923, device='cuda:0')}
|
67 |
+
{'training_loss': tensor(0.6085, device='cuda:0'), 'train_loss_ce': tensor(0.5220, device='cuda:0'), 'train_loss_bbox': tensor(0.0068, device='cuda:0'), 'train_loss_giou': tensor(0.0262, device='cuda:0'), 'train_cardinality_error': tensor(2., device='cuda:0'), 'validation_loss': tensor(1.0497, device='cuda:0'), 'validation_loss_ce': tensor(0.5107, device='cuda:0'), 'validation_loss_bbox': tensor(0.0296, device='cuda:0'), 'validation_loss_giou': tensor(0.1956, device='cuda:0'), 'validation_cardinality_error': tensor(5.0769, device='cuda:0')}
|
68 |
+
{'training_loss': tensor(0.8323, device='cuda:0'), 'train_loss_ce': tensor(0.6898, device='cuda:0'), 'train_loss_bbox': tensor(0.0066, device='cuda:0'), 'train_loss_giou': tensor(0.0548, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(1.0601, device='cuda:0'), 'validation_loss_ce': tensor(0.5050, device='cuda:0'), 'validation_loss_bbox': tensor(0.0268, device='cuda:0'), 'validation_loss_giou': tensor(0.2104, device='cuda:0'), 'validation_cardinality_error': tensor(4.5385, device='cuda:0')}
|
69 |
+
{'training_loss': tensor(0.7580, device='cuda:0'), 'train_loss_ce': tensor(0.5615, device='cuda:0'), 'train_loss_bbox': tensor(0.0114, device='cuda:0'), 'train_loss_giou': tensor(0.0698, device='cuda:0'), 'train_cardinality_error': tensor(7., device='cuda:0'), 'validation_loss': tensor(0.9543, device='cuda:0'), 'validation_loss_ce': tensor(0.4833, device='cuda:0'), 'validation_loss_bbox': tensor(0.0251, device='cuda:0'), 'validation_loss_giou': tensor(0.1728, device='cuda:0'), 'validation_cardinality_error': tensor(3.6154, device='cuda:0')}
|
70 |
+
{'training_loss': tensor(0.3371, device='cuda:0'), 'train_loss_ce': tensor(0.3310, device='cuda:0'), 'train_loss_bbox': tensor(0.0007, device='cuda:0'), 'train_loss_giou': tensor(0.0012, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.1173, device='cuda:0'), 'validation_loss_ce': tensor(0.4800, device='cuda:0'), 'validation_loss_bbox': tensor(0.0358, device='cuda:0'), 'validation_loss_giou': tensor(0.2292, device='cuda:0'), 'validation_cardinality_error': tensor(3.0769, device='cuda:0')}
|
71 |
+
{'training_loss': tensor(0.5773, device='cuda:0'), 'train_loss_ce': tensor(0.4423, device='cuda:0'), 'train_loss_bbox': tensor(0.0132, device='cuda:0'), 'train_loss_giou': tensor(0.0345, device='cuda:0'), 'train_cardinality_error': tensor(2., device='cuda:0'), 'validation_loss': tensor(1.0636, device='cuda:0'), 'validation_loss_ce': tensor(0.4695, device='cuda:0'), 'validation_loss_bbox': tensor(0.0331, device='cuda:0'), 'validation_loss_giou': tensor(0.2142, device='cuda:0'), 'validation_cardinality_error': tensor(2.9231, device='cuda:0')}
|
72 |
+
{'training_loss': tensor(0.4857, device='cuda:0'), 'train_loss_ce': tensor(0.4557, device='cuda:0'), 'train_loss_bbox': tensor(0.0024, device='cuda:0'), 'train_loss_giou': tensor(0.0090, device='cuda:0'), 'train_cardinality_error': tensor(3., device='cuda:0'), 'validation_loss': tensor(0.9294, device='cuda:0'), 'validation_loss_ce': tensor(0.4525, device='cuda:0'), 'validation_loss_bbox': tensor(0.0261, device='cuda:0'), 'validation_loss_giou': tensor(0.1731, device='cuda:0'), 'validation_cardinality_error': tensor(2.6923, device='cuda:0')}
|
73 |
+
{'training_loss': tensor(0.2669, device='cuda:0'), 'train_loss_ce': tensor(0.2263, device='cuda:0'), 'train_loss_bbox': tensor(0.0032, device='cuda:0'), 'train_loss_giou': tensor(0.0124, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.9155, device='cuda:0'), 'validation_loss_ce': tensor(0.4423, device='cuda:0'), 'validation_loss_bbox': tensor(0.0248, device='cuda:0'), 'validation_loss_giou': tensor(0.1747, device='cuda:0'), 'validation_cardinality_error': tensor(2.5385, device='cuda:0')}
|
74 |
+
{'training_loss': tensor(0.3390, device='cuda:0'), 'train_loss_ce': tensor(0.2219, device='cuda:0'), 'train_loss_bbox': tensor(0.0025, device='cuda:0'), 'train_loss_giou': tensor(0.0524, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.9206, device='cuda:0'), 'validation_loss_ce': tensor(0.4341, device='cuda:0'), 'validation_loss_bbox': tensor(0.0263, device='cuda:0'), 'validation_loss_giou': tensor(0.1776, device='cuda:0'), 'validation_cardinality_error': tensor(2.3077, device='cuda:0')}
|
75 |
+
{'training_loss': tensor(0.2855, device='cuda:0'), 'train_loss_ce': tensor(0.2616, device='cuda:0'), 'train_loss_bbox': tensor(0.0020, device='cuda:0'), 'train_loss_giou': tensor(0.0070, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(1.0480, device='cuda:0'), 'validation_loss_ce': tensor(0.4292, device='cuda:0'), 'validation_loss_bbox': tensor(0.0343, device='cuda:0'), 'validation_loss_giou': tensor(0.2237, device='cuda:0'), 'validation_cardinality_error': tensor(2.2308, device='cuda:0')}
|
76 |
+
{'training_loss': tensor(0.2797, device='cuda:0'), 'train_loss_ce': tensor(0.2461, device='cuda:0'), 'train_loss_bbox': tensor(0.0029, device='cuda:0'), 'train_loss_giou': tensor(0.0096, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(1.0097, device='cuda:0'), 'validation_loss_ce': tensor(0.4160, device='cuda:0'), 'validation_loss_bbox': tensor(0.0317, device='cuda:0'), 'validation_loss_giou': tensor(0.2177, device='cuda:0'), 'validation_cardinality_error': tensor(2.0769, device='cuda:0')}
|
77 |
+
{'training_loss': tensor(0.4434, device='cuda:0'), 'train_loss_ce': tensor(0.3431, device='cuda:0'), 'train_loss_bbox': tensor(0.0047, device='cuda:0'), 'train_loss_giou': tensor(0.0385, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.9164, device='cuda:0'), 'validation_loss_ce': tensor(0.3956, device='cuda:0'), 'validation_loss_bbox': tensor(0.0263, device='cuda:0'), 'validation_loss_giou': tensor(0.1947, device='cuda:0'), 'validation_cardinality_error': tensor(1.6923, device='cuda:0')}
|
78 |
+
{'training_loss': tensor(0.7076, device='cuda:0'), 'train_loss_ce': tensor(0.5633, device='cuda:0'), 'train_loss_bbox': tensor(0.0063, device='cuda:0'), 'train_loss_giou': tensor(0.0564, device='cuda:0'), 'train_cardinality_error': tensor(5., device='cuda:0'), 'validation_loss': tensor(1.0224, device='cuda:0'), 'validation_loss_ce': tensor(0.3994, device='cuda:0'), 'validation_loss_bbox': tensor(0.0360, device='cuda:0'), 'validation_loss_giou': tensor(0.2216, device='cuda:0'), 'validation_cardinality_error': tensor(1.8462, device='cuda:0')}
|
79 |
+
{'training_loss': tensor(0.3618, device='cuda:0'), 'train_loss_ce': tensor(0.2966, device='cuda:0'), 'train_loss_bbox': tensor(0.0034, device='cuda:0'), 'train_loss_giou': tensor(0.0242, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.9028, device='cuda:0'), 'validation_loss_ce': tensor(0.3809, device='cuda:0'), 'validation_loss_bbox': tensor(0.0293, device='cuda:0'), 'validation_loss_giou': tensor(0.1877, device='cuda:0'), 'validation_cardinality_error': tensor(1.8462, device='cuda:0')}
|
80 |
+
{'training_loss': tensor(0.5109, device='cuda:0'), 'train_loss_ce': tensor(0.3869, device='cuda:0'), 'train_loss_bbox': tensor(0.0057, device='cuda:0'), 'train_loss_giou': tensor(0.0478, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.9129, device='cuda:0'), 'validation_loss_ce': tensor(0.3762, device='cuda:0'), 'validation_loss_bbox': tensor(0.0264, device='cuda:0'), 'validation_loss_giou': tensor(0.2024, device='cuda:0'), 'validation_cardinality_error': tensor(1.6923, device='cuda:0')}
|
81 |
+
{'training_loss': tensor(0.3791, device='cuda:0'), 'train_loss_ce': tensor(0.3609, device='cuda:0'), 'train_loss_bbox': tensor(0.0016, device='cuda:0'), 'train_loss_giou': tensor(0.0050, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.9797, device='cuda:0'), 'validation_loss_ce': tensor(0.3611, device='cuda:0'), 'validation_loss_bbox': tensor(0.0331, device='cuda:0'), 'validation_loss_giou': tensor(0.2265, device='cuda:0'), 'validation_cardinality_error': tensor(1.6923, device='cuda:0')}
|
82 |
+
{'training_loss': tensor(0.2169, device='cuda:0'), 'train_loss_ce': tensor(0.1839, device='cuda:0'), 'train_loss_bbox': tensor(0.0030, device='cuda:0'), 'train_loss_giou': tensor(0.0091, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(0.8334, device='cuda:0'), 'validation_loss_ce': tensor(0.3444, device='cuda:0'), 'validation_loss_bbox': tensor(0.0261, device='cuda:0'), 'validation_loss_giou': tensor(0.1792, device='cuda:0'), 'validation_cardinality_error': tensor(1.7692, device='cuda:0')}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
```
|
84 |
|
85 |
## Examples
|