File size: 1,787 Bytes
599bd45
9734ee0
 
 
 
 
 
e3fefad
 
 
 
 
9734ee0
53fc189
 
e3fefad
7aa637f
 
9feb919
72f647b
 
 
ae31c5c
 
 
 
 
 
72f647b
 
9feb919
e3fefad
9feb919
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
language:
- tr
- en
- es
license: apache-2.0
library_name: transformers
tags:
- Generative AI
- text-generation-inference
- text-generation
- peft
- unsloth
---

# Model Trained By Meforgers
*This model was trained by Meforgers for the futuristic projects.*

- # *Firstly*

  
  -If u want to use unsloth; For Pytorch 2.3.0: Use the "ampere" path for newer RTX 30xx GPUs or higher.
  ```python
      pip install "unsloth[cu118-torch230] @ git+https://github.com/unslothai/unsloth.git"
      pip install "unsloth[cu121-torch230] @ git+https://github.com/unslothai/unsloth.git"
      pip install "unsloth[cu118-ampere-torch230] @ git+https://github.com/unslothai/unsloth.git"
      pip install "unsloth[cu121-ampere-torch230] @ git+https://github.com/unslothai/unsloth.git"
     ```
  -Also you can use another system
  
- # *Usage*

  ```python
  from unsloth import FastLanguageModel
  import torch
  
  # Variable side
  max_seq_length = 512 
  dtype = torch.float16 
  load_in_4bit = True
  
  # Alpaca prompt
  alpaca_prompt = """### Instruction:
  {0}
  
  ### Input:
  {1}
  
  ### Response:
  {2}
  """
  
  model, tokenizer = FastLanguageModel.from_pretrained(
      model_name="Meforgers/Aixr",
      max_seq_length=max_seq_length,
      dtype=dtype,
      load_in_4bit=load_in_4bit,
  )
  
  FastLanguageModel.for_inference(model)
  
  inputs = tokenizer(
      [
          alpaca_prompt.format(
              "Can u text me basic python code?",  # instruction side (You need to change that side)
              "",  # input
              "",  # output - leave this blank for generation!
          )
      ],
      return_tensors="pt"
  ).to("cuda")
  
  outputs = model.generate(**inputs, max_new_tokens=128, use_cache=True)
  print(tokenizer.batch_decode(outputs))
  
  ```