Update README.md
Browse files
README.md
CHANGED
@@ -15,53 +15,53 @@ language:
|
|
15 |
# Model Trained By Meforgers
|
16 |
*This model was trained by Meforgers for the futuristic projects.*
|
17 |
|
18 |
-
# *Firstly*
|
19 |
-
- Need to install packages
|
20 |
|
21 |
|
22 |
-
# *Usage*
|
23 |
|
24 |
-
```python
|
25 |
-
from unsloth import FastLanguageModel
|
26 |
-
import torch
|
27 |
-
|
28 |
-
# Variable side
|
29 |
-
max_seq_length = 512
|
30 |
-
dtype = torch.float16
|
31 |
-
load_in_4bit = True
|
32 |
-
|
33 |
-
# Alpaca prompt
|
34 |
-
alpaca_prompt = """### Instruction:
|
35 |
-
{0}
|
36 |
-
|
37 |
-
### Input:
|
38 |
-
{1}
|
39 |
-
|
40 |
-
### Response:
|
41 |
-
{2}
|
42 |
-
"""
|
43 |
-
|
44 |
-
model, tokenizer = FastLanguageModel.from_pretrained(
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
)
|
50 |
-
|
51 |
-
FastLanguageModel.for_inference(model)
|
52 |
-
|
53 |
-
inputs = tokenizer(
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
).to("cuda")
|
63 |
-
|
64 |
-
outputs = model.generate(**inputs, max_new_tokens=128, use_cache=True)
|
65 |
-
print(tokenizer.batch_decode(outputs))
|
66 |
-
|
67 |
-
```
|
|
|
15 |
# Model Trained By Meforgers
|
16 |
*This model was trained by Meforgers for the futuristic projects.*
|
17 |
|
18 |
+
- # *Firstly*
|
19 |
+
- Need to install packages
|
20 |
|
21 |
|
22 |
+
- # *Usage*
|
23 |
|
24 |
+
```python
|
25 |
+
from unsloth import FastLanguageModel
|
26 |
+
import torch
|
27 |
+
|
28 |
+
# Variable side
|
29 |
+
max_seq_length = 512
|
30 |
+
dtype = torch.float16
|
31 |
+
load_in_4bit = True
|
32 |
+
|
33 |
+
# Alpaca prompt
|
34 |
+
alpaca_prompt = """### Instruction:
|
35 |
+
{0}
|
36 |
+
|
37 |
+
### Input:
|
38 |
+
{1}
|
39 |
+
|
40 |
+
### Response:
|
41 |
+
{2}
|
42 |
+
"""
|
43 |
+
|
44 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
45 |
+
model_name="Meforgers/Aixr",
|
46 |
+
max_seq_length=max_seq_length,
|
47 |
+
dtype=dtype,
|
48 |
+
load_in_4bit=load_in_4bit,
|
49 |
+
)
|
50 |
+
|
51 |
+
FastLanguageModel.for_inference(model)
|
52 |
+
|
53 |
+
inputs = tokenizer(
|
54 |
+
[
|
55 |
+
alpaca_prompt.format(
|
56 |
+
"Can u text me basic python code?", # instruction side (You need to change that side)
|
57 |
+
"", # input
|
58 |
+
"", # output - leave this blank for generation!
|
59 |
+
)
|
60 |
+
],
|
61 |
+
return_tensors="pt"
|
62 |
+
).to("cuda")
|
63 |
+
|
64 |
+
outputs = model.generate(**inputs, max_new_tokens=128, use_cache=True)
|
65 |
+
print(tokenizer.batch_decode(outputs))
|
66 |
+
|
67 |
+
```
|