File size: 2,039 Bytes
56d79b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---

language:
- fl
license: mit
base_model: microsoft/speecht5_tts
tags:
- Tets only
- generated_from_trainer
datasets:
- mewu/test
model-index:
- name: Mewu custom
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Mewu custom

This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the mewu dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4956

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001

- train_batch_size: 16

- eval_batch_size: 8

- seed: 42

- gradient_accumulation_steps: 2

- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500

- training_steps: 1000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch    | Step | Validation Loss |
|:-------------:|:--------:|:----:|:---------------:|
| 0.4967        | 66.6667  | 100  | 0.4655          |
| 0.504         | 133.3333 | 200  | 0.4540          |
| 0.5434        | 200.0    | 300  | 0.6293          |
| 1.5883        | 266.6667 | 400  | 1.5112          |
| 1.5286        | 333.3333 | 500  | 1.5048          |
| 1.4761        | 400.0    | 600  | 1.5227          |
| 1.4458        | 466.6667 | 700  | 1.4967          |
| 1.4453        | 533.3333 | 800  | 1.4935          |
| 1.4446        | 600.0    | 900  | 1.4960          |
| 1.4451        | 666.6667 | 1000 | 1.4956          |


### Framework versions

- Transformers 4.40.1
- Pytorch 2.3.0+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1