Add the practice
Browse files
README.md
CHANGED
@@ -19,9 +19,9 @@ base_model:
|
|
19 |
---
|
20 |
# [TEMPO: Prompt-based Generative Pre-trained Transformer for Time Series Forecasting](https://arxiv.org/abs/2310.04948)
|
21 |
|
22 |
-
[![preprint](https://img.shields.io/static/v1?label=arXiv&message=2310.04948&color=B31B1B&logo=arXiv)](https://arxiv.org/pdf/2310.04948)
|
23 |
|
24 |
-
![TEMPO_logo](pics/TEMPO_logo.png)
|
25 |
|
26 |
|
27 |
|
@@ -43,27 +43,27 @@ We use the following Colab page to show the demo of building the customer datase
|
|
43 |
|
44 |
|
45 |
|
46 |
-
#
|
47 |
|
48 |
-
## Download the repo
|
49 |
|
50 |
```
|
51 |
git clone git@github.com:DC-research/TEMPO.git
|
52 |
```
|
53 |
|
54 |
-
## [Optional] Download the model and config file via commands
|
55 |
```
|
56 |
huggingface-cli download Melady/TEMPO config.json --local-dir ./TEMPO/TEMPO_checkpoints
|
57 |
```
|
58 |
```
|
59 |
-
huggingface-cli download Melady/TEMPO TEMPO-
|
60 |
```
|
61 |
|
62 |
```
|
63 |
-
|
64 |
```
|
65 |
|
66 |
-
## Build the environment
|
67 |
|
68 |
```
|
69 |
conda create -n tempo python=3.8
|
@@ -78,7 +78,7 @@ cd TEMPO
|
|
78 |
pip install -r requirements.txt
|
79 |
```
|
80 |
|
81 |
-
## Script Demo
|
82 |
|
83 |
A streamlining example showing how to perform forecasting using TEMPO:
|
84 |
|
@@ -107,31 +107,31 @@ print(predicted_values)
|
|
107 |
```
|
108 |
|
109 |
|
110 |
-
## Online demo
|
111 |
|
112 |
Please try our foundation model demo [[here]](https://4171a8a7484b3e9148.gradio.live).
|
113 |
|
114 |
![TEMPO_demo.jpg](pics/TEMPO_demo.jpg)
|
115 |
|
116 |
|
117 |
-
|
118 |
|
119 |
We also updated our models on HuggingFace: [[Melady/TEMPO]](https://huggingface.co/Melady/TEMPO).
|
120 |
|
121 |
|
122 |
|
123 |
-
|
124 |
|
125 |
Download the data from [[Google Drive]](https://drive.google.com/drive/folders/13Cg1KYOlzM5C7K8gK8NfC-F3EYxkM3D2?usp=sharing) or [[Baidu Drive]](https://pan.baidu.com/s/1r3KhGd0Q9PJIUZdfEYoymg?pwd=i9iy), and place the downloaded data in the folder`./dataset`. You can also download the STL results from [[Google Drive]](https://drive.google.com/file/d/1gWliIGDDSi2itUAvYaRgACru18j753Kw/view?usp=sharing), and place the downloaded data in the folder`./stl`.
|
126 |
|
127 |
-
|
128 |
|
129 |
-
### Pre-Training Stage
|
130 |
```
|
131 |
bash [ecl, etth1, etth2, ettm1, ettm2, traffic, weather].sh
|
132 |
```
|
133 |
|
134 |
-
### Test/ Inference Stage
|
135 |
|
136 |
After training, we can test TEMPO model under the zero-shot setting:
|
137 |
|
@@ -142,11 +142,11 @@ bash [ecl, etth1, etth2, ettm1, ettm2, traffic, weather]_test.sh
|
|
142 |
![TEMPO-results](pics/results.jpg)
|
143 |
|
144 |
|
145 |
-
|
146 |
|
147 |
You can download the pre-trained model from [[Google Drive]](https://drive.google.com/file/d/11Ho_seP9NGh-lQCyBkvQhAQFy_3XVwKp/view?usp=drive_link) and then run the test script for fun.
|
148 |
|
149 |
-
|
150 |
|
151 |
Here is the prompts use to generate the coresponding textual informaton of time series via [[OPENAI ChatGPT-3.5 API]](https://platform.openai.com/docs/guides/text-generation)
|
152 |
|
@@ -159,7 +159,7 @@ The time series data are come from [[S&P 500]](https://www.spglobal.com/spdji/en
|
|
159 |
|
160 |
Example of generated contextual information for the Company marked above:
|
161 |
|
162 |
-
![Company1_ebitda_summary_words.jpg](pics/Company1_ebitda_summary_words.jpg
|
163 |
|
164 |
|
165 |
|
@@ -167,7 +167,7 @@ Example of generated contextual information for the Company marked above:
|
|
167 |
You can download the processed data with text embedding from GPT2 from: [[TETS]](https://drive.google.com/file/d/1Hu2KFj0kp4kIIpjbss2ciLCV_KiBreoJ/view?usp=drive_link
|
168 |
).
|
169 |
|
170 |
-
|
171 |
|
172 |
|
173 |
- **Oct 2024**: 🚀 We've streamlined our code structure, enabling users to download the pre-trained model and perform zero-shot inference with a single line of code! Check out our [demo](./run_TEMPO_demo.py) for more details. Our model's download count on HuggingFace is now trackable!
|
@@ -192,10 +192,10 @@ You can download the processed data with text embedding from GPT2 from: [[TETS]]
|
|
192 |
- [] Multimodal pre-training script
|
193 |
|
194 |
|
195 |
-
|
196 |
Feel free to connect DefuCao@USC.EDU / YanLiu.CS@USC.EDU if you’re interested in applying TEMPO to your real-world application.
|
197 |
|
198 |
-
|
199 |
```
|
200 |
@inproceedings{
|
201 |
cao2024tempo,
|
|
|
19 |
---
|
20 |
# [TEMPO: Prompt-based Generative Pre-trained Transformer for Time Series Forecasting](https://arxiv.org/abs/2310.04948)
|
21 |
|
22 |
+
[![preprint](https://img.shields.io/static/v1?label=arXiv&message=2310.04948&color=B31B1B&logo=arXiv)](https://arxiv.org/pdf/2310.04948)
|
23 |
|
24 |
+
![TEMPO_logo|50%](pics/TEMPO_logo.png)
|
25 |
|
26 |
|
27 |
|
|
|
43 |
|
44 |
|
45 |
|
46 |
+
# 🔧 Hands-on: Using Foundation Model
|
47 |
|
48 |
+
## 1. Download the repo
|
49 |
|
50 |
```
|
51 |
git clone git@github.com:DC-research/TEMPO.git
|
52 |
```
|
53 |
|
54 |
+
## 2. [Optional] Download the model and config file via commands
|
55 |
```
|
56 |
huggingface-cli download Melady/TEMPO config.json --local-dir ./TEMPO/TEMPO_checkpoints
|
57 |
```
|
58 |
```
|
59 |
+
huggingface-cli download Melady/TEMPO TEMPO-80M_v1.pth --local-dir ./TEMPO/TEMPO_checkpoints
|
60 |
```
|
61 |
|
62 |
```
|
63 |
+
huggingface-cli download Melady/TEMPO TEMPO-80M_v2.pth --local-dir ./TEMPO/TEMPO_checkpoints
|
64 |
```
|
65 |
|
66 |
+
## 3. Build the environment
|
67 |
|
68 |
```
|
69 |
conda create -n tempo python=3.8
|
|
|
78 |
pip install -r requirements.txt
|
79 |
```
|
80 |
|
81 |
+
## 4. Script Demo
|
82 |
|
83 |
A streamlining example showing how to perform forecasting using TEMPO:
|
84 |
|
|
|
107 |
```
|
108 |
|
109 |
|
110 |
+
## 5. Online demo
|
111 |
|
112 |
Please try our foundation model demo [[here]](https://4171a8a7484b3e9148.gradio.live).
|
113 |
|
114 |
![TEMPO_demo.jpg](pics/TEMPO_demo.jpg)
|
115 |
|
116 |
|
117 |
+
# 🔨 Advanced Practice: Full Training Workflow!
|
118 |
|
119 |
We also updated our models on HuggingFace: [[Melady/TEMPO]](https://huggingface.co/Melady/TEMPO).
|
120 |
|
121 |
|
122 |
|
123 |
+
## 1. Get Data
|
124 |
|
125 |
Download the data from [[Google Drive]](https://drive.google.com/drive/folders/13Cg1KYOlzM5C7K8gK8NfC-F3EYxkM3D2?usp=sharing) or [[Baidu Drive]](https://pan.baidu.com/s/1r3KhGd0Q9PJIUZdfEYoymg?pwd=i9iy), and place the downloaded data in the folder`./dataset`. You can also download the STL results from [[Google Drive]](https://drive.google.com/file/d/1gWliIGDDSi2itUAvYaRgACru18j753Kw/view?usp=sharing), and place the downloaded data in the folder`./stl`.
|
126 |
|
127 |
+
## 2. Run Scripts
|
128 |
|
129 |
+
### 2.1 Pre-Training Stage
|
130 |
```
|
131 |
bash [ecl, etth1, etth2, ettm1, ettm2, traffic, weather].sh
|
132 |
```
|
133 |
|
134 |
+
### 2.2 Test/ Inference Stage
|
135 |
|
136 |
After training, we can test TEMPO model under the zero-shot setting:
|
137 |
|
|
|
142 |
![TEMPO-results](pics/results.jpg)
|
143 |
|
144 |
|
145 |
+
# Pre-trained Models
|
146 |
|
147 |
You can download the pre-trained model from [[Google Drive]](https://drive.google.com/file/d/11Ho_seP9NGh-lQCyBkvQhAQFy_3XVwKp/view?usp=drive_link) and then run the test script for fun.
|
148 |
|
149 |
+
# TETS dataset
|
150 |
|
151 |
Here is the prompts use to generate the coresponding textual informaton of time series via [[OPENAI ChatGPT-3.5 API]](https://platform.openai.com/docs/guides/text-generation)
|
152 |
|
|
|
159 |
|
160 |
Example of generated contextual information for the Company marked above:
|
161 |
|
162 |
+
![Company1_ebitda_summary_words.jpg](pics/Company1_ebitda_summary_words.jpg)
|
163 |
|
164 |
|
165 |
|
|
|
167 |
You can download the processed data with text embedding from GPT2 from: [[TETS]](https://drive.google.com/file/d/1Hu2KFj0kp4kIIpjbss2ciLCV_KiBreoJ/view?usp=drive_link
|
168 |
).
|
169 |
|
170 |
+
# 🚀 News
|
171 |
|
172 |
|
173 |
- **Oct 2024**: 🚀 We've streamlined our code structure, enabling users to download the pre-trained model and perform zero-shot inference with a single line of code! Check out our [demo](./run_TEMPO_demo.py) for more details. Our model's download count on HuggingFace is now trackable!
|
|
|
192 |
- [] Multimodal pre-training script
|
193 |
|
194 |
|
195 |
+
# Contact
|
196 |
Feel free to connect DefuCao@USC.EDU / YanLiu.CS@USC.EDU if you’re interested in applying TEMPO to your real-world application.
|
197 |
|
198 |
+
# Cite our work
|
199 |
```
|
200 |
@inproceedings{
|
201 |
cao2024tempo,
|