idevede commited on
Commit
5e03218
1 Parent(s): 3e77fd4

update readme

Browse files
Files changed (1) hide show
  1. README.md +10 -7
README.md CHANGED
@@ -20,12 +20,14 @@ The official code for ICLR 2024 paper: "TEMPO: Prompt-based Generative Pre-train
20
 
21
  TEMPO is one of the very first open source Time Series Foundation Models for forecasting task v1.0 version.
22
 
23
- <div align="center"><img src=pics/TEMPO.png width=80% /></div>
 
24
 
25
 
26
  Please try our foundation model demo [[here]](https://4171a8a7484b3e9148.gradio.live).
27
 
28
- <div align="center"><img src=pics/TEMPO_demo.png width=80% /></div>
 
29
 
30
  # Build the environment
31
 
@@ -57,8 +59,7 @@ After training, we can test TEMPO model under the zero-shot setting:
57
  ```
58
  bash [ecl, etth1, etth2, ettm1, ettm2, traffic, weather]_test.sh
59
  ```
60
-
61
- <div align="center"><img src=pics/results.jpg width=90% /></div>
62
 
63
 
64
  # Pre-trained Models
@@ -69,16 +70,18 @@ You can download the pre-trained model from [[Google Drive]](https://drive.googl
69
 
70
  Here is the prompts use to generate the coresponding textual informaton of time series via [[OPENAI ChatGPT-3.5 API]](https://platform.openai.com/docs/guides/text-generation)
71
 
72
- <div align="center"><img src=pics/TETS_prompt.png width=80% /></div>
 
73
 
74
  The time series data are come from [[S&P 500]](https://www.spglobal.com/spdji/en/indices/equity/sp-500/#overview). Here is the EBITDA case for one company from the dataset:
75
 
 
76
 
77
- <div align="center"><img src=pics/Company1_ebitda_summary.png width=80% /></div>
78
 
79
  Example of generated contextual information for the Company marked above:
80
 
81
- <div align="center"><img src=pics/Company1_ebitda_summary_words.jpg width=80% /></div>
 
82
 
83
 
84
 
 
20
 
21
  TEMPO is one of the very first open source Time Series Foundation Models for forecasting task v1.0 version.
22
 
23
+ ![TEMPO-architecture](pics/TEMPO.png)
24
+
25
 
26
 
27
  Please try our foundation model demo [[here]](https://4171a8a7484b3e9148.gradio.live).
28
 
29
+ ![TEMPO-demo](pics/TEMPO_demo.png)
30
+
31
 
32
  # Build the environment
33
 
 
59
  ```
60
  bash [ecl, etth1, etth2, ettm1, ettm2, traffic, weather]_test.sh
61
  ```
62
+ ![TEMPO-results](pics/results.jpg)
 
63
 
64
 
65
  # Pre-trained Models
 
70
 
71
  Here is the prompts use to generate the coresponding textual informaton of time series via [[OPENAI ChatGPT-3.5 API]](https://platform.openai.com/docs/guides/text-generation)
72
 
73
+ ![TEMPO-prompt](pics/TETS_prompt.png)
74
+
75
 
76
  The time series data are come from [[S&P 500]](https://www.spglobal.com/spdji/en/indices/equity/sp-500/#overview). Here is the EBITDA case for one company from the dataset:
77
 
78
+ ![Company1_ebitda_summary](pics/Company1_ebitda_summary.png)
79
 
 
80
 
81
  Example of generated contextual information for the Company marked above:
82
 
83
+ ![Company1_ebitda_summary_words.jpg](pics/Company1_ebitda_summary_words.jpg.png)
84
+
85
 
86
 
87