update readme
Browse files- README.md +85 -3
- pics/Company1_ebitda_summary.png +0 -0
- pics/Company1_ebitda_summary_words.jpg +0 -0
- pics/TEMPO.png +0 -0
- pics/TEMPO_demo.jpg +0 -0
- pics/TETS_prompt.jpg +0 -0
- pics/TETS_prompt.png +0 -0
- pics/results.jpg +0 -0
README.md
CHANGED
@@ -1,3 +1,85 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# TEMPO: Prompt-based Generative Pre-trained Transformer for Time Series Forecasting
|
2 |
+
|
3 |
+
The official code for ICLR 2024 paper: "TEMPO: Prompt-based Generative Pre-trained Transformer for Time Series Forecasting (ICLR 2024)".
|
4 |
+
|
5 |
+
TEMPO is one of the very first open source Time Series Foundation Models for forecasting task v1.0 version.
|
6 |
+
|
7 |
+
<div align="center"><img src=./pics/TEMPO.png width=80% /></div>
|
8 |
+
|
9 |
+
|
10 |
+
Please try our foundation model demo [[here]](https://4171a8a7484b3e9148.gradio.live).
|
11 |
+
|
12 |
+
<div align="center"><img src=./pics/TEMPO_demo.png width=80% /></div>
|
13 |
+
|
14 |
+
# Build the environment
|
15 |
+
|
16 |
+
```
|
17 |
+
conda create -n tempo python=3.8
|
18 |
+
```
|
19 |
+
```
|
20 |
+
conda activate tempo
|
21 |
+
```
|
22 |
+
```
|
23 |
+
pip install -r requirements.txt
|
24 |
+
```
|
25 |
+
|
26 |
+
# Get Data
|
27 |
+
|
28 |
+
Download the data from [[Google Drive]](https://drive.google.com/drive/folders/13Cg1KYOlzM5C7K8gK8NfC-F3EYxkM3D2?usp=sharing) or [[Baidu Drive]](https://pan.baidu.com/s/1r3KhGd0Q9PJIUZdfEYoymg?pwd=i9iy), and place the downloaded data in the folder`./dataset`. You can also download the STL results from [[Google Drive]](https://drive.google.com/file/d/1gWliIGDDSi2itUAvYaRgACru18j753Kw/view?usp=sharing), and place the downloaded data in the folder`./stl`.
|
29 |
+
|
30 |
+
# Run TEMPO
|
31 |
+
|
32 |
+
## Training Stage
|
33 |
+
```
|
34 |
+
bash [ecl, etth1, etth2, ettm1, ettm2, traffic, weather].sh
|
35 |
+
```
|
36 |
+
|
37 |
+
## Test
|
38 |
+
|
39 |
+
After training, we can test TEMPO model under the zero-shot setting:
|
40 |
+
|
41 |
+
```
|
42 |
+
bash [ecl, etth1, etth2, ettm1, ettm2, traffic, weather]_test.sh
|
43 |
+
```
|
44 |
+
|
45 |
+
<div align="center"><img src=./pics/results.jpg width=90% /></div>
|
46 |
+
|
47 |
+
|
48 |
+
# Pre-trained Models
|
49 |
+
|
50 |
+
You can download the pre-trained model from [[Google Drive]](https://drive.google.com/file/d/11Ho_seP9NGh-lQCyBkvQhAQFy_3XVwKp/view?usp=drive_link) and then run the test script for fun.
|
51 |
+
|
52 |
+
# Multi-modality dataset: TETS dataset
|
53 |
+
|
54 |
+
Here is the prompts use to generate the coresponding textual informaton of time series via [[OPENAI ChatGPT-3.5 API]](https://platform.openai.com/docs/guides/text-generation)
|
55 |
+
|
56 |
+
<div align="center"><img src=./pics/TETS_prompt.png width=80% /></div>
|
57 |
+
|
58 |
+
The time series data are come from [[S&P 500]](https://www.spglobal.com/spdji/en/indices/equity/sp-500/#overview). Here is the EBITDA case for one company from the dataset:
|
59 |
+
|
60 |
+
|
61 |
+
<div align="center"><img src=./pics/Company1_ebitda_summary.png width=80% /></div>
|
62 |
+
|
63 |
+
Example of generated contextual information for the Company marked above:
|
64 |
+
|
65 |
+
<div align="center"><img src=./pics/Company1_ebitda_summary_words.jpg width=80% /></div>
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
+
|
70 |
+
You can download the processed data with text embedding from GPT2 from: [[TETS]](https://drive.google.com/file/d/1Hu2KFj0kp4kIIpjbss2ciLCV_KiBreoJ/view?usp=drive_link
|
71 |
+
).
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
+
## Cite
|
76 |
+
```
|
77 |
+
@inproceedings{
|
78 |
+
cao2024tempo,
|
79 |
+
title={{TEMPO}: Prompt-based Generative Pre-trained Transformer for Time Series Forecasting},
|
80 |
+
author={Defu Cao and Furong Jia and Sercan O Arik and Tomas Pfister and Yixiang Zheng and Wen Ye and Yan Liu},
|
81 |
+
booktitle={The Twelfth International Conference on Learning Representations},
|
82 |
+
year={2024},
|
83 |
+
url={https://openreview.net/forum?id=YH5w12OUuU}
|
84 |
+
}
|
85 |
+
```
|
pics/Company1_ebitda_summary.png
ADDED
pics/Company1_ebitda_summary_words.jpg
ADDED
pics/TEMPO.png
ADDED
pics/TEMPO_demo.jpg
ADDED
pics/TETS_prompt.jpg
ADDED
pics/TETS_prompt.png
ADDED
pics/results.jpg
ADDED