--- license: apache-2.0 datasets: - ETDataset/ett language: - en metrics: - mse - mae library_name: transformers pipeline_tag: time-series-forecasting tags: - Time-series - foundation-model - forecasting - TSFM base_model: - openai-community/gpt2 --- # [TEMPO: Prompt-based Generative Pre-trained Transformer for Time Series Forecasting](https://arxiv.org/abs/2310.04948) [![preprint](https://img.shields.io/static/v1?label=arXiv&message=2310.04948&color=B31B1B&logo=arXiv)](https://arxiv.org/pdf/2310.04948) ![TEMPO_logo|50%](pics/TEMPO_logo.png) The official code for [["TEMPO: Prompt-based Generative Pre-trained Transformer for Time Series Forecasting (ICLR 2024)"]](https://arxiv.org/pdf/2310.04948). TEMPO is one of the very first open source **Time Series Foundation Models** for forecasting task v1.0 version. ![TEMPO-architecture](pics/TEMPO.png) ## πŸ’‘ Demos ### 1. Reproducing zero-shot experiments on ETTh2: Please try to reproduc the zero-shot experiments on ETTh2 [[here on Colab]](https://colab.research.google.com/drive/11qGpT7H1JMaTlMlm9WtHFZ3_cJz7p-og?usp=sharing). ### 2. Zero-shot experiments on customer dataset: We use the following Colab page to show the demo of building the customer dataset and directly do the inference via our pre-trained foundation model: [[Colab]](https://colab.research.google.com/drive/1ZpWbK0L6mq1pav2yDqOuORo4rHbv80-A?usp=sharing) # πŸ”§ Hands-on: Using Foundation Model ## 1. Download the repo ``` git clone git@github.com:DC-research/TEMPO.git ``` ## 2. [Optional] Download the model and config file via commands ``` huggingface-cli download Melady/TEMPO config.json --local-dir ./TEMPO/TEMPO_checkpoints ``` ``` huggingface-cli download Melady/TEMPO TEMPO-80M_v1.pth --local-dir ./TEMPO/TEMPO_checkpoints ``` ``` huggingface-cli download Melady/TEMPO TEMPO-80M_v2.pth --local-dir ./TEMPO/TEMPO_checkpoints ``` ## 3. Build the environment ``` conda create -n tempo python=3.8 ``` ``` conda activate tempo ``` ``` cd TEMPO ``` ``` pip install -r requirements.txt ``` ## 4. Script Demo A streamlining example showing how to perform forecasting using TEMPO: ```python # Third-party library imports import numpy as np import torch from numpy.random import choice # Local imports from models.TEMPO import TEMPO model = TEMPO.load_pretrained_model( device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu'), repo_id = "Melady/TEMPO", filename = "TEMPO-80M_v1.pth", cache_dir = "./checkpoints/TEMPO_checkpoints" ) input_data = np.random.rand(336) # Random input data with torch.no_grad(): predicted_values = model.predict(input_data, pred_length=96) print("Predicted values:") print(predicted_values) ``` ## 5. Online demo Please try our foundation model demo [[here]](https://4171a8a7484b3e9148.gradio.live). ![TEMPO_demo.jpg](pics/TEMPO_demo.jpg) # πŸ”¨ Advanced Practice: Full Training Workflow! We also updated our models on HuggingFace: [[Melady/TEMPO]](https://huggingface.co/Melady/TEMPO). ## 1. Get Data Download the data from [[Google Drive]](https://drive.google.com/drive/folders/13Cg1KYOlzM5C7K8gK8NfC-F3EYxkM3D2?usp=sharing) or [[Baidu Drive]](https://pan.baidu.com/s/1r3KhGd0Q9PJIUZdfEYoymg?pwd=i9iy), and place the downloaded data in the folder`./dataset`. You can also download the STL results from [[Google Drive]](https://drive.google.com/file/d/1gWliIGDDSi2itUAvYaRgACru18j753Kw/view?usp=sharing), and place the downloaded data in the folder`./stl`. ## 2. Run Scripts ### 2.1 Pre-Training Stage ``` bash [ecl, etth1, etth2, ettm1, ettm2, traffic, weather].sh ``` ### 2.2 Test/ Inference Stage After training, we can test TEMPO model under the zero-shot setting: ``` bash [ecl, etth1, etth2, ettm1, ettm2, traffic, weather]_test.sh ``` ![TEMPO-results](pics/results.jpg) # Pre-trained Models You can download the pre-trained model from [[Google Drive]](https://drive.google.com/file/d/11Ho_seP9NGh-lQCyBkvQhAQFy_3XVwKp/view?usp=drive_link) and then run the test script for fun. # TETS dataset Here is the prompts use to generate the coresponding textual informaton of time series via [[OPENAI ChatGPT-3.5 API]](https://platform.openai.com/docs/guides/text-generation) ![TEMPO-prompt](pics/TETS_prompt.png) The time series data are come from [[S&P 500]](https://www.spglobal.com/spdji/en/indices/equity/sp-500/#overview). Here is the EBITDA case for one company from the dataset: ![Company1_ebitda_summary](pics/Company1_ebitda_summary.png) Example of generated contextual information for the Company marked above: ![Company1_ebitda_summary_words.jpg](pics/Company1_ebitda_summary_words.jpg) You can download the processed data with text embedding from GPT2 from: [[TETS]](https://drive.google.com/file/d/1Hu2KFj0kp4kIIpjbss2ciLCV_KiBreoJ/view?usp=drive_link ). # πŸš€ News - **Oct 2024**: πŸš€ We've streamlined our code structure, enabling users to download the pre-trained model and perform zero-shot inference with a single line of code! Check out our [demo](./run_TEMPO_demo.py) for more details. Our model's download count on HuggingFace is now trackable! - **Jun 2024**: πŸš€ We added demos for reproducing zero-shot experiments in [Colab](https://colab.research.google.com/drive/11qGpT7H1JMaTlMlm9WtHFZ3_cJz7p-og?usp=sharing). We also added the demo of building the customer dataset and directly do the inference via our pre-trained foundation model: [Colab](https://colab.research.google.com/drive/1ZpWbK0L6mq1pav2yDqOuORo4rHbv80-A?usp=sharing) - **May 2024**: πŸš€ TEMPO has launched a GUI-based online [demo](https://4171a8a7484b3e9148.gradio.live/), allowing users to directly interact with our foundation model! - **May 2024**: πŸš€ TEMPO published the 80M pretrained foundation model in [HuggingFace](https://huggingface.co/Melady/TEMPO)! - **May 2024**: πŸ§ͺ We added the code for pretraining and inference TEMPO models. You can find a pre-training script demo in [this folder](./scripts/etth2.sh). We also added [a script](./scripts/etth2_test.sh) for the inference demo. - **Mar 2024**: πŸ“ˆ Released [TETS dataset](https://drive.google.com/file/d/1Hu2KFj0kp4kIIpjbss2ciLCV_KiBreoJ/view?usp=drive_link) from [S&P 500](https://www.spglobal.com/spdji/en/indices/equity/sp-500/#overview) used in multimodal experiments in TEMPO. - **Mar 2024**: πŸ§ͺ TEMPO published the project [code](https://github.com/DC-research/TEMPO) and the pre-trained checkpoint [online](https://drive.google.com/file/d/11Ho_seP9NGh-lQCyBkvQhAQFy_3XVwKp/view?usp=drive_link)! - **Jan 2024**: πŸš€ TEMPO [paper](https://openreview.net/pdf?id=YH5w12OUuU) get accepted by ICLR! - **Oct 2023**: πŸš€ TEMPO [paper](https://arxiv.org/pdf/2310.04948) released on Arxiv! ## ⏳ Upcoming Features - [βœ…] Parallel pre-training pipeline - [] Probabilistic forecasting - [] Multimodal dataset - [] Multimodal pre-training script # Contact Feel free to connect DefuCao@USC.EDU / YanLiu.CS@USC.EDU if you’re interested in applying TEMPO to your real-world application. # Cite our work ``` @inproceedings{ cao2024tempo, title={{TEMPO}: Prompt-based Generative Pre-trained Transformer for Time Series Forecasting}, author={Defu Cao and Furong Jia and Sercan O Arik and Tomas Pfister and Yixiang Zheng and Wen Ye and Yan Liu}, booktitle={The Twelfth International Conference on Learning Representations}, year={2024}, url={https://openreview.net/forum?id=YH5w12OUuU} } ``` ``` @article{ Jia_Wang_Zheng_Cao_Liu_2024, title={GPT4MTS: Prompt-based Large Language Model for Multimodal Time-series Forecasting}, volume={38}, url={https://ojs.aaai.org/index.php/AAAI/article/view/30383}, DOI={10.1609/aaai.v38i21.30383}, number={21}, journal={Proceedings of the AAAI Conference on Artificial Intelligence}, author={Jia, Furong and Wang, Kevin and Zheng, Yixiang and Cao, Defu and Liu, Yan}, year={2024}, month={Mar.}, pages={23343-23351} } ```