ResolveEmbed
Collection
Embedding models mostly for RAG Resolve and evidence re-ranking
•
2 items
•
Updated
This is a sentence-transformers model finetuned from nvidia/NV-Embed-v2. It maps sentences & paragraphs to a 4096-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: NVEmbedModel
(1): Pooling({'word_embedding_dimension': 4096, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': False})
(2): Normalize()
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("MendelAI/nv-embed-v2-ontada-twab-peft")
# Run inference
sentences = [
'Instruct: Given a question, retrieve passages that answer the question. Query: what is the total dose administered in the EBRT Intensity Modulated Radiation Therapy?',
'Source: SOAP_Note. Date: 2020-03-13. Context: MV electrons.\n \n FIELDS:\n The right orbital mass and right cervical lymph nodes were initially treated with a two arc IMRT plan. Arc 1: 11.4 x 21 cm. Gantry start and stop angles 178 degrees / 182 degrees. Arc 2: 16.4 x 13.0 cm. Gantry start ',
'Source: Radiology. Date: 2023-09-18. Context: : >60\n \n Contrast Type: OMNI 350\n Volume: 80ML\n \n Lot_: ________\n \n Exp. date: 05/26 \n Study Completed: CT CHEST W\n \n Reading Group:BCH \n \n Prior Studies for Comparison: 06/14/23 CT CHEST W RMCC \n \n ________ ______\n ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 4096]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
ontada-test
PatientQAEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6856 |
cosine_accuracy@3 | 0.9531 |
cosine_accuracy@5 | 0.9909 |
cosine_accuracy@10 | 1.0 |
cosine_precision@1 | 0.6856 |
cosine_precision@3 | 0.5209 |
cosine_precision@5 | 0.3969 |
cosine_precision@10 | 0.2251 |
cosine_recall@1 | 0.4203 |
cosine_recall@3 | 0.8154 |
cosine_recall@5 | 0.9454 |
cosine_recall@10 | 1.0046 |
cosine_ndcg@10 | 0.8649 |
cosine_mrr@10 | 0.8191 |
cosine_map@100 | 0.805 |
question
and context
question | context | |
---|---|---|
type | string | string |
details |
|
|
question | context |
---|---|
Instruct: Given a question, retrieve passages that answer the question. Query: what was the abnormality identified for BRAF? |
Source: Genetic_Testing. Date: 2022-10-07. Context: Mutational Seq DNA-Tumor Low, 6 mt/Mb NF1 |
Instruct: Given a question, retrieve passages that answer the question. Query: what was the abnormality identified for BRAF? |
Source: Genetic_Testing. Date: 2021-06-04. Context: characteristics have been determined by _____ ____ |
Instruct: Given a question, retrieve passages that answer the question. Query: what was the abnormality identified for BRAF? |
Source: Pathology. Date: 2019-12-12. Context: Receive Date: 12/12/2019 |
MultipleNegativesRankingLoss
with these parameters:{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
eval_strategy
: stepsper_device_train_batch_size
: 4per_device_eval_batch_size
: 64learning_rate
: 2e-05num_train_epochs
: 1warmup_ratio
: 0.1seed
: 6789bf16
: Trueprompts
: {'question': 'Instruct: Given a question, retrieve passages that answer the question. Query: '}batch_sampler
: no_duplicatesoverwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 4per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 6789data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
: auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseprompts
: {'question': 'Instruct: Given a question, retrieve passages that answer the question. Query: '}batch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportionalEpoch | Step | Training Loss | ontada-test_cosine_ndcg@10 |
---|---|---|---|
0 | 0 | - | 0.8431 |
0.0002 | 1 | 1.5826 | - |
0.0371 | 150 | 0.4123 | - |
0.0741 | 300 | 0.3077 | - |
0.1112 | 450 | 0.2184 | - |
0.1483 | 600 | 0.3291 | - |
0.1853 | 750 | 0.2343 | - |
0.2224 | 900 | 0.2506 | - |
0.2471 | 1000 | - | 0.8077 |
0.2595 | 1050 | 0.1294 | - |
0.2965 | 1200 | 0.0158 | - |
0.3336 | 1350 | 0.0189 | - |
0.3706 | 1500 | 0.0363 | - |
0.4077 | 1650 | 0.0208 | - |
0.4448 | 1800 | 0.475 | - |
0.4818 | 1950 | 0.6183 | - |
0.4942 | 2000 | - | 0.8482 |
0.5189 | 2100 | 0.4779 | - |
0.5560 | 2250 | 0.4194 | - |
0.5930 | 2400 | 0.8376 | - |
0.6301 | 2550 | 0.4249 | - |
0.6672 | 2700 | 0.9336 | - |
0.7042 | 2850 | 0.5351 | - |
0.7413 | 3000 | 1.0253 | 0.8551 |
0.7784 | 3150 | 0.3961 | - |
0.8154 | 3300 | 0.3881 | - |
0.8525 | 3450 | 0.5573 | - |
0.8895 | 3600 | 1.222 | - |
0.9266 | 3750 | 0.3032 | - |
0.9637 | 3900 | 0.3142 | - |
0.9884 | 4000 | - | 0.8645 |
1.0 | 4047 | - | 0.8649 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Base model
nvidia/NV-Embed-v2