Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +18 -16
- a2c-PandaReachDense-v2/policy.optimizer.pth +2 -2
- a2c-PandaReachDense-v2/policy.pth +2 -2
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -0.48 +/- 0.24
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:faae3ebc03b1f0787014c3b77f0b6e32a2426f275634b27bbf3ab7afd902d917
|
3 |
+
size 109615
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -11,7 +11,9 @@
|
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
-
":serialized:": "
|
|
|
|
|
15 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
"optimizer_kwargs": {
|
17 |
"alpha": 0.99,
|
@@ -24,19 +26,19 @@
|
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
-
"start_time":
|
28 |
-
"learning_rate": 0.
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
31 |
":type:": "<class 'function'>",
|
32 |
-
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
-
":serialized:": "
|
37 |
-
"achieved_goal": "[[0.
|
38 |
-
"desired_goal": "[[
|
39 |
-
"observation": "[[
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -44,30 +46,30 @@
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
-
"desired_goal": "[[
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
53 |
-
"use_sde":
|
54 |
"sde_sample_freq": -1,
|
55 |
"_current_progress_remaining": 0.0,
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
63 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
},
|
65 |
-
"_n_updates":
|
66 |
-
"n_steps":
|
67 |
"gamma": 0.99,
|
68 |
-
"gae_lambda":
|
69 |
"ent_coef": 0.0,
|
70 |
-
"vf_coef": 0.
|
71 |
"max_grad_norm": 0.5,
|
72 |
"normalize_advantage": false,
|
73 |
"observation_space": {
|
|
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
15 |
+
"log_std_init": -2,
|
16 |
+
"ortho_init": false,
|
17 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
18 |
"optimizer_kwargs": {
|
19 |
"alpha": 0.99,
|
|
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1681577453864577886,
|
30 |
+
"learning_rate": 0.00096,
|
31 |
"tensorboard_log": null,
|
32 |
"lr_schedule": {
|
33 |
":type:": "<class 'function'>",
|
34 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
35 |
},
|
36 |
"_last_obs": {
|
37 |
":type:": "<class 'collections.OrderedDict'>",
|
38 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAw8nWPuq3KTw5Bg0/w8nWPuq3KTw5Bg0/w8nWPuq3KTw5Bg0/w8nWPuq3KTw5Bg0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA6uPZP5Uwn7+ic7E+S8UoP7VzCr8+BVi+cjsUP+aYwr/Wapi+FDN4v6PPGL4kXMI/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADDydY+6rcpPDkGDT+TAqc9e45uOPVaZz3DydY+6rcpPDkGDT+TAqc9e45uOPVaZz3DydY+6rcpPDkGDT+TAqc9e45uOPVaZz3DydY+6rcpPDkGDT+TAqc9e45uOPVaZz2UaA5LBEsGhpRoEnSUUpR1Lg==",
|
39 |
+
"achieved_goal": "[[0.41950807 0.01035879 0.5508762 ]\n [0.41950807 0.01035879 0.5508762 ]\n [0.41950807 0.01035879 0.5508762 ]\n [0.41950807 0.01035879 0.5508762 ]]",
|
40 |
+
"desired_goal": "[[ 1.7022679 -1.2436701 0.34658533]\n [ 0.65926045 -0.54082805 -0.2109575 ]\n [ 0.57903206 -1.5202911 -0.2976901 ]\n [-0.9695294 -0.14922957 1.5184369 ]]",
|
41 |
+
"observation": "[[4.1950807e-01 1.0358790e-02 5.5087620e-01 8.1547879e-02 5.6876317e-05\n 5.6483228e-02]\n [4.1950807e-01 1.0358790e-02 5.5087620e-01 8.1547879e-02 5.6876317e-05\n 5.6483228e-02]\n [4.1950807e-01 1.0358790e-02 5.5087620e-01 8.1547879e-02 5.6876317e-05\n 5.6483228e-02]\n [4.1950807e-01 1.0358790e-02 5.5087620e-01 8.1547879e-02 5.6876317e-05\n 5.6483228e-02]]"
|
42 |
},
|
43 |
"_last_episode_starts": {
|
44 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
46 |
},
|
47 |
"_last_original_obs": {
|
48 |
":type:": "<class 'collections.OrderedDict'>",
|
49 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAdYsVvlh4EL7KbZQ+Qsu+PFbNE76auWQ+k5XTPCrBhD0tcr49GIv9vLoep7woMAs+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
50 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
51 |
+
"desired_goal": "[[-0.1460398 -0.14108407 0.28990012]\n [ 0.02329028 -0.14433798 0.22336426]\n [ 0.02582816 0.06482156 0.09299121]\n [-0.03095011 -0.02040039 0.13592589]]",
|
52 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
53 |
},
|
54 |
"_episode_num": 0,
|
55 |
+
"use_sde": true,
|
56 |
"sde_sample_freq": -1,
|
57 |
"_current_progress_remaining": 0.0,
|
58 |
"_stats_window_size": 100,
|
59 |
"ep_info_buffer": {
|
60 |
":type:": "<class 'collections.deque'>",
|
61 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIu2QcI9nj8b+UhpRSlIwBbJRLMowBdJRHQKjfVCBPKuB1fZQoaAZoCWgPQwjFVtC0xErsv5SGlFKUaBVLMmgWR0Co3viAc1fmdX2UKGgGaAloD0MIzNJOzeWG4r+UhpRSlGgVSzJoFkdAqN6hT0g8sHV9lChoBmgJaA9DCIfhI2JKJNm/lIaUUpRoFUsyaBZHQKjeSBjnV5N1fZQoaAZoCWgPQwhKCFbVy2/tv5SGlFKUaBVLMmgWR0Co4J5DRc/udX2UKGgGaAloD0MIvhWJCWr45L+UhpRSlGgVSzJoFkdAqOBC7iADrHV9lChoBmgJaA9DCD2ARX79EO2/lIaUUpRoFUsyaBZHQKjf68cMmWt1fZQoaAZoCWgPQwh+xoUDIVnjv5SGlFKUaBVLMmgWR0Co35J5eJHidX2UKGgGaAloD0MIIvsgy4IJ6b+UhpRSlGgVSzJoFkdAqOG8Cih37nV9lChoBmgJaA9DCG3/ykqTUta/lIaUUpRoFUsyaBZHQKjhYInBtUJ1fZQoaAZoCWgPQwhHO2743fThv5SGlFKUaBVLMmgWR0Co4Qljd56ddX2UKGgGaAloD0MIrFj8prDS5b+UhpRSlGgVSzJoFkdAqOCwLb5/LHV9lChoBmgJaA9DCGPuWkI+aOW/lIaUUpRoFUsyaBZHQKjiyt7KJVN1fZQoaAZoCWgPQwiKWMSwwxjov5SGlFKUaBVLMmgWR0Co4m8Z9/jLdX2UKGgGaAloD0MIcH1Yb9SK4b+UhpRSlGgVSzJoFkdAqOIYBDG96HV9lChoBmgJaA9DCLKC34YYL+2/lIaUUpRoFUsyaBZHQKjhvtKqXF91fZQoaAZoCWgPQwi8dJMYBNbjv5SGlFKUaBVLMmgWR0Co4+E0BOpLdX2UKGgGaAloD0MIfgBSmzg56L+UhpRSlGgVSzJoFkdAqOOFyNn5BXV9lChoBmgJaA9DCPn02JYBZ+m/lIaUUpRoFUsyaBZHQKjjLp0OmSB1fZQoaAZoCWgPQwipiT4fZcTbv5SGlFKUaBVLMmgWR0Co4tVYyO7ydX2UKGgGaAloD0MIRG/x8J4D27+UhpRSlGgVSzJoFkdAqOUIHVwxWXV9lChoBmgJaA9DCLvSMlLvKeS/lIaUUpRoFUsyaBZHQKjkrOJtSAJ1fZQoaAZoCWgPQwiOsRNeglPXv5SGlFKUaBVLMmgWR0Co5FWbwz+FdX2UKGgGaAloD0MIuM1UiEdi8b+UhpRSlGgVSzJoFkdAqOP9LJ0W/XV9lChoBmgJaA9DCN+LL9rjhd2/lIaUUpRoFUsyaBZHQKjmG+xnnMd1fZQoaAZoCWgPQwg51O/C1mzZv5SGlFKUaBVLMmgWR0Co5cBUBGQTdX2UKGgGaAloD0MIuOhkqfV+2L+UhpRSlGgVSzJoFkdAqOVpPAO8TXV9lChoBmgJaA9DCJSI8C+CRuK/lIaUUpRoFUsyaBZHQKjlEBHTZxt1fZQoaAZoCWgPQwjxS/28qUjbv5SGlFKUaBVLMmgWR0Co5yuM+/xldX2UKGgGaAloD0MIg09z8iIT0r+UhpRSlGgVSzJoFkdAqObQXl8w6HV9lChoBmgJaA9DCN44Kcx7nNe/lIaUUpRoFUsyaBZHQKjmeUYbbUR1fZQoaAZoCWgPQwiNnIU97fDgv5SGlFKUaBVLMmgWR0Co5iAGr0aqdX2UKGgGaAloD0MIwJfCg2bX4r+UhpRSlGgVSzJoFkdAqOhEBEKE4HV9lChoBmgJaA9DCAVTzaylgOC/lIaUUpRoFUsyaBZHQKjn6CYkVvd1fZQoaAZoCWgPQwhlG7gDdUrjv5SGlFKUaBVLMmgWR0Co55D6N2kjdX2UKGgGaAloD0MIoOHNGryv1r+UhpRSlGgVSzJoFkdAqOc3wVj7RHV9lChoBmgJaA9DCDdUjPM3ody/lIaUUpRoFUsyaBZHQKjpicCHRCx1fZQoaAZoCWgPQwg1fuGVJE/pv5SGlFKUaBVLMmgWR0Co6S8mKIi1dX2UKGgGaAloD0MIxyx7Etgc5L+UhpRSlGgVSzJoFkdAqOjYzch1T3V9lChoBmgJaA9DCJUp5iDoaNq/lIaUUpRoFUsyaBZHQKjogLLIPsl1fZQoaAZoCWgPQwiLw5lfzQHYv5SGlFKUaBVLMmgWR0Co60HAIppfdX2UKGgGaAloD0MIFD/G3LWE5L+UhpRSlGgVSzJoFkdAqOrnDk2gnXV9lChoBmgJaA9DCEz9vKlIhdS/lIaUUpRoFUsyaBZHQKjqkgX/HYJ1fZQoaAZoCWgPQwg+eO3ShsPAv5SGlFKUaBVLMmgWR0Co6jsLfDUFdX2UKGgGaAloD0MIx5v8Fp0s0r+UhpRSlGgVSzJoFkdAqOz6eGwiaHV9lChoBmgJaA9DCNf6IqEt596/lIaUUpRoFUsyaBZHQKjsn3Dej211fZQoaAZoCWgPQwgCEk2giEXcv5SGlFKUaBVLMmgWR0Co7EkTg2qDdX2UKGgGaAloD0MI81oJ3SXx6b+UhpRSlGgVSzJoFkdAqOvwDNhVl3V9lChoBmgJaA9DCPTcQlciUMG/lIaUUpRoFUsyaBZHQKjuyTyJ9Ap1fZQoaAZoCWgPQwhBCwkYXd7jv5SGlFKUaBVLMmgWR0Co7m4nndO7dX2UKGgGaAloD0MI4UBIFjAB5b+UhpRSlGgVSzJoFkdAqO4XgNwzcnV9lChoBmgJaA9DCKNWmL7XEN+/lIaUUpRoFUsyaBZHQKjtvzJ6po91fZQoaAZoCWgPQwiLG7eYnxvkv5SGlFKUaBVLMmgWR0Co8LiADq4ZdX2UKGgGaAloD0MId2aC4VxD47+UhpRSlGgVSzJoFkdAqPBd1fVqe3V9lChoBmgJaA9DCB/WG7XCdPK/lIaUUpRoFUsyaBZHQKjwB7O3UhF1fZQoaAZoCWgPQwgHDJI+rSLgv5SGlFKUaBVLMmgWR0Co76+bd8ArdX2UKGgGaAloD0MI2nOZmgRv2L+UhpRSlGgVSzJoFkdAqPKwzHjp93V9lChoBmgJaA9DCMWrrG2Kx+O/lIaUUpRoFUsyaBZHQKjyVdTo+wF1fZQoaAZoCWgPQwjtKqT8pNrav5SGlFKUaBVLMmgWR0Co8f/ag261dX2UKGgGaAloD0MIaeTziqce0b+UhpRSlGgVSzJoFkdAqPGnMKTjenV9lChoBmgJaA9DCKwahLndS+S/lIaUUpRoFUsyaBZHQKj0FmWdEst1fZQoaAZoCWgPQwgzU1p/S4Dlv5SGlFKUaBVLMmgWR0Co87rRKHwgdX2UKGgGaAloD0MIVP61vHK94L+UhpRSlGgVSzJoFkdAqPNjjvNNanV9lChoBmgJaA9DCL1tpkI8kuK/lIaUUpRoFUsyaBZHQKjzCkSElE91fZQoaAZoCWgPQwgq5bUSusvov5SGlFKUaBVLMmgWR0Co9SOwgTysdX2UKGgGaAloD0MIqtTsgVZg57+UhpRSlGgVSzJoFkdAqPTIlY2bX3V9lChoBmgJaA9DCEFIFjCBW+q/lIaUUpRoFUsyaBZHQKj0cX9itq51fZQoaAZoCWgPQwhNui2RC07kv5SGlFKUaBVLMmgWR0Co9BggxJumdX2UKGgGaAloD0MIYytoWmLl4L+UhpRSlGgVSzJoFkdAqPY+LcbiqHV9lChoBmgJaA9DCMMq3sg88uG/lIaUUpRoFUsyaBZHQKj14r4Fia11fZQoaAZoCWgPQwhnD7QCQ9bgv5SGlFKUaBVLMmgWR0Co9YuSGJvYdX2UKGgGaAloD0MIbqXXZmMl4L+UhpRSlGgVSzJoFkdAqPUyUqx1PnV9lChoBmgJaA9DCKa0/pYA/OW/lIaUUpRoFUsyaBZHQKj3UQf6oEV1fZQoaAZoCWgPQwhxVkRN9PnUv5SGlFKUaBVLMmgWR0Co9vXF1jiGdX2UKGgGaAloD0MIaRoUzQNY6L+UhpRSlGgVSzJoFkdAqPaerhisn3V9lChoBmgJaA9DCMN95NakW+e/lIaUUpRoFUsyaBZHQKj2RVXFLnN1fZQoaAZoCWgPQwg4vvbMkgDiv5SGlFKUaBVLMmgWR0Co+Gq/EfkndX2UKGgGaAloD0MI1H0AUpu46b+UhpRSlGgVSzJoFkdAqPgPIuGsWHV9lChoBmgJaA9DCFTE6SRbHfG/lIaUUpRoFUsyaBZHQKj3uAAAAAB1fZQoaAZoCWgPQwg826M33Effv5SGlFKUaBVLMmgWR0Co916sySFHdX2UKGgGaAloD0MIJ71vfO2Zy7+UhpRSlGgVSzJoFkdAqPlq7NB4U3V9lChoBmgJaA9DCGA97lutE9m/lIaUUpRoFUsyaBZHQKj5DxS5y2h1fZQoaAZoCWgPQwh/vcKC+wHev5SGlFKUaBVLMmgWR0Co+Lep4rz5dX2UKGgGaAloD0MIFTYDXJCt4b+UhpRSlGgVSzJoFkdAqPheglF+eHV9lChoBmgJaA9DCBmrzf+rjt+/lIaUUpRoFUsyaBZHQKj6qavzOHF1fZQoaAZoCWgPQwg9Rnnm5bDXv5SGlFKUaBVLMmgWR0Co+k5O8CgcdX2UKGgGaAloD0MIw7gbRGtFwb+UhpRSlGgVSzJoFkdAqPn3KB/ZunV9lChoBmgJaA9DCApkdha90+W/lIaUUpRoFUsyaBZHQKj5nqcEvCd1fZQoaAZoCWgPQwgB3CxeLAzev5SGlFKUaBVLMmgWR0Co+68RDkU9dX2UKGgGaAloD0MIF7g81oyM5b+UhpRSlGgVSzJoFkdAqPtUjkdWAHV9lChoBmgJaA9DCIWX4NQHkuC/lIaUUpRoFUsyaBZHQKj6/dvbXYl1fZQoaAZoCWgPQwgKFLGIYYfXv5SGlFKUaBVLMmgWR0Co+qUHIIWydX2UKGgGaAloD0MIpyA/G7lu0r+UhpRSlGgVSzJoFkdAqPy8yFfzBnV9lChoBmgJaA9DCAWGrG71nNC/lIaUUpRoFUsyaBZHQKj8YScLBsR1fZQoaAZoCWgPQwgnhA66hEPkv5SGlFKUaBVLMmgWR0Co/Aneaa1DdX2UKGgGaAloD0MIuYrFbwqr4L+UhpRSlGgVSzJoFkdAqPuwdELH/HV9lChoBmgJaA9DCDOHpBZKJt2/lIaUUpRoFUsyaBZHQKj91OW0JF91fZQoaAZoCWgPQwimnC/2XnzTv5SGlFKUaBVLMmgWR0Co/XkZiuuBdX2UKGgGaAloD0MIX85sV+iDzb+UhpRSlGgVSzJoFkdAqP0hysCDEnV9lChoBmgJaA9DCJTeN772zN2/lIaUUpRoFUsyaBZHQKj8yG/N7jV1ZS4="
|
62 |
},
|
63 |
"ep_success_buffer": {
|
64 |
":type:": "<class 'collections.deque'>",
|
65 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
66 |
},
|
67 |
+
"_n_updates": 31250,
|
68 |
+
"n_steps": 8,
|
69 |
"gamma": 0.99,
|
70 |
+
"gae_lambda": 0.9,
|
71 |
"ent_coef": 0.0,
|
72 |
+
"vf_coef": 0.4,
|
73 |
"max_grad_norm": 0.5,
|
74 |
"normalize_advantage": false,
|
75 |
"observation_space": {
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:54ca0ec0443ebe5307e0090d68a0b28fb2a84dba206f6dc6923fefde30604ad5
|
3 |
+
size 45438
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:30c8429266ca3d09f697cfddfc20199fc45a2596f47c3aede0e27ecfa0716e47
|
3 |
+
size 46718
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f13599e6310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f13599e5740>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681573628986835863, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAjjriPi+oTTvYShU/jjriPi+oTTvYShU/jjriPi+oTTvYShU/jjriPi+oTTvYShU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAynfbvyRG07wBRZu/87N2P0Xsw7+4mES/YNqSv7WOsT0JMec+qFiLPyDGHb8/2tm/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACOOuI+L6hNO9hKFT95/5o5Wv9Lu5ZnULqOOuI+L6hNO9hKFT95/5o5Wv9Lu5ZnULqOOuI+L6hNO9hKFT95/5o5Wv9Lu5ZnULqOOuI+L6hNO9hKFT95/5o5Wv9Lu5ZnULqUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.441853 0.00313808 0.5831733 ]\n [0.441853 0.00313808 0.5831733 ]\n [0.441853 0.00313808 0.5831733 ]\n [0.441853 0.00313808 0.5831733 ]]", "desired_goal": "[[-1.7145932 -0.02579028 -1.2130433 ]\n [ 0.9636833 -1.5306479 -0.7679553 ]\n [-1.1472893 0.08669797 0.45154598]\n [ 1.0886431 -0.6163044 -1.7019728 ]]", "observation": "[[ 4.4185299e-01 3.1380763e-03 5.8317327e-01 2.9563511e-04\n -3.1127543e-03 -7.9500058e-04]\n [ 4.4185299e-01 3.1380763e-03 5.8317327e-01 2.9563511e-04\n -3.1127543e-03 -7.9500058e-04]\n [ 4.4185299e-01 3.1380763e-03 5.8317327e-01 2.9563511e-04\n -3.1127543e-03 -7.9500058e-04]\n [ 4.4185299e-01 3.1380763e-03 5.8317327e-01 2.9563511e-04\n -3.1127543e-03 -7.9500058e-04]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA38CYPA0q5zuYH4A+h9+TPag4Cb1DDYk92z7RPXxdwTxw9YY+Jz+ovUqbhr39cWo+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.01864666 0.00705457 0.25024104]\n [ 0.07220369 -0.0335013 0.06691983]\n [ 0.10217067 0.02360415 0.2635913 ]\n [-0.0821517 -0.06572588 0.22895046]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+kZ0z7pG9L+UhpRSlIwBbJRLMowBdJRHQKlBlYLb5/N1fZQoaAZoCWgPQwjBjv8CQUAHwJSGlFKUaBVLMmgWR0CpQVbOeJ53dX2UKGgGaAloD0MIqdpugm8a97+UhpRSlGgVSzJoFkdAqUEaXQdCFHV9lChoBmgJaA9DCKlsWFNZlPW/lIaUUpRoFUsyaBZHQKlA3ua4MF51fZQoaAZoCWgPQwh0KENVTMUGwJSGlFKUaBVLMmgWR0CpQoNFz+3pdX2UKGgGaAloD0MIYFlpUgpaAsCUhpRSlGgVSzJoFkdAqUJE7bL2YnV9lChoBmgJaA9DCKyL22gAL/u/lIaUUpRoFUsyaBZHQKlCCLYPGyZ1fZQoaAZoCWgPQwhwJqYLsZoQwJSGlFKUaBVLMmgWR0CpQc0EX+ERdX2UKGgGaAloD0MIz7uxoDAICsCUhpRSlGgVSzJoFkdAqUN1kH2RJXV9lChoBmgJaA9DCMmqCDcZ1QTAlIaUUpRoFUsyaBZHQKlDNwKjSG91fZQoaAZoCWgPQwhSmPc406QAwJSGlFKUaBVLMmgWR0CpQvqISDh+dX2UKGgGaAloD0MIdAmH3uJBBcCUhpRSlGgVSzJoFkdAqUK+n889wHV9lChoBmgJaA9DCBBZpIl34AnAlIaUUpRoFUsyaBZHQKlEbYfW+XZ1fZQoaAZoCWgPQwjfN772zJIEwJSGlFKUaBVLMmgWR0CpRC7dSEUTdX2UKGgGaAloD0MIsktUbw1MDMCUhpRSlGgVSzJoFkdAqUPya3I+4nV9lChoBmgJaA9DCFN5O8Jp4QzAlIaUUpRoFUsyaBZHQKlDtsWO6up1fZQoaAZoCWgPQwhkz57L1MQSwJSGlFKUaBVLMmgWR0CpRWIwM6RydX2UKGgGaAloD0MICf8iaMzEAcCUhpRSlGgVSzJoFkdAqUUjoZAIIHV9lChoBmgJaA9DCI4Dr5Y7kwbAlIaUUpRoFUsyaBZHQKlE53oLXtl1fZQoaAZoCWgPQwicacL2kwETwJSGlFKUaBVLMmgWR0CpRKuuA7PqdX2UKGgGaAloD0MIXRYTm4/r97+UhpRSlGgVSzJoFkdAqUZcKJEYwnV9lChoBmgJaA9DCMe44uKofArAlIaUUpRoFUsyaBZHQKlGHZwGW2R1fZQoaAZoCWgPQwhQqKePwD8JwJSGlFKUaBVLMmgWR0CpReE6DGtIdX2UKGgGaAloD0MI4uR+h6KA+L+UhpRSlGgVSzJoFkdAqUWladMCcXV9lChoBmgJaA9DCBbdek0PqgfAlIaUUpRoFUsyaBZHQKlHUNDtw711fZQoaAZoCWgPQwhCQSlauVcKwJSGlFKUaBVLMmgWR0CpRxKagElmdX2UKGgGaAloD0MIT6+UZYhDB8CUhpRSlGgVSzJoFkdAqUbWk8A7xXV9lChoBmgJaA9DCFJjQswlFQTAlIaUUpRoFUsyaBZHQKlGmr5IpYt1fZQoaAZoCWgPQwisGoS53Yv/v5SGlFKUaBVLMmgWR0CpSEpKjBVNdX2UKGgGaAloD0MIsWzmkNTCBsCUhpRSlGgVSzJoFkdAqUgMAtFrmHV9lChoBmgJaA9DCPBt+rMfqQ3AlIaUUpRoFUsyaBZHQKlHz7D2rXF1fZQoaAZoCWgPQwjGavP/qiMGwJSGlFKUaBVLMmgWR0CpR5PWxyGSdX2UKGgGaAloD0MIzv5AuW3f+L+UhpRSlGgVSzJoFkdAqUlhM6BAfXV9lChoBmgJaA9DCBU6r7FL1AbAlIaUUpRoFUsyaBZHQKlJItoSL611fZQoaAZoCWgPQwjBcoQM5OkQwJSGlFKUaBVLMmgWR0CpSOePRzBAdX2UKGgGaAloD0MIDY6SV+e4AMCUhpRSlGgVSzJoFkdAqUirtNSIg3V9lChoBmgJaA9DCNE8gEV+vRDAlIaUUpRoFUsyaBZHQKlKWgCfYjB1fZQoaAZoCWgPQwiOzvkpjsP5v5SGlFKUaBVLMmgWR0CpSht1hb4bdX2UKGgGaAloD0MIEFzlCYQdCcCUhpRSlGgVSzJoFkdAqUnfVVghKXV9lChoBmgJaA9DCBKDwMqhxf2/lIaUUpRoFUsyaBZHQKlJo/Glyip1fZQoaAZoCWgPQwjGwaVjzhMBwJSGlFKUaBVLMmgWR0CpS1BrN4Z/dX2UKGgGaAloD0MIzXNEvkspBcCUhpRSlGgVSzJoFkdAqUsR4SpR43V9lChoBmgJaA9DCFwf1hu1Avy/lIaUUpRoFUsyaBZHQKlK1ZcLSeB1fZQoaAZoCWgPQwgm4xjJHiEOwJSGlFKUaBVLMmgWR0CpSpnARChOdX2UKGgGaAloD0MIv5mYLsSqBsCUhpRSlGgVSzJoFkdAqUxMFhXr+3V9lChoBmgJaA9DCHDP86eNCgbAlIaUUpRoFUsyaBZHQKlMDXvH93t1fZQoaAZoCWgPQwhlARO4dTf7v5SGlFKUaBVLMmgWR0CpS9FL39JjdX2UKGgGaAloD0MIwf2ABwawAsCUhpRSlGgVSzJoFkdAqUuVsguAZ3V9lChoBmgJaA9DCDzaOGItvv2/lIaUUpRoFUsyaBZHQKlNP7ngYP51fZQoaAZoCWgPQwiRRZp4B7gJwJSGlFKUaBVLMmgWR0CpTQFq8DjjdX2UKGgGaAloD0MIyM7b2OyoBsCUhpRSlGgVSzJoFkdAqUzFAood/HV9lChoBmgJaA9DCBgmUwWj8gLAlIaUUpRoFUsyaBZHQKlMiSjgydp1fZQoaAZoCWgPQwjmXIqryv4BwJSGlFKUaBVLMmgWR0CpTkPCVKPGdX2UKGgGaAloD0MI9fdSeNCMAMCUhpRSlGgVSzJoFkdAqU4Fb/wRXnV9lChoBmgJaA9DCI3UeyqnvQDAlIaUUpRoFUsyaBZHQKlNyT0QK8d1fZQoaAZoCWgPQwjz5nCt9rAEwJSGlFKUaBVLMmgWR0CpTY1KXfIkdX2UKGgGaAloD0MIdjI4Sl49A8CUhpRSlGgVSzJoFkdAqU8/boKUmnV9lChoBmgJaA9DCJIIjWDj+g/AlIaUUpRoFUsyaBZHQKlPAN0eU6h1fZQoaAZoCWgPQwh7oBUYsvoBwJSGlFKUaBVLMmgWR0CpTsR77bcodX2UKGgGaAloD0MIIsZrXtX5BsCUhpRSlGgVSzJoFkdAqU6Ilv60pnV9lChoBmgJaA9DCOuNWmH6ng/AlIaUUpRoFUsyaBZHQKlQghr30wt1fZQoaAZoCWgPQwhTeNDsurf9v5SGlFKUaBVLMmgWR0CpUERfnfVJdX2UKGgGaAloD0MIdelfksp0CcCUhpRSlGgVSzJoFkdAqVAJBZ6lcnV9lChoBmgJaA9DCGjnNAu0WwTAlIaUUpRoFUsyaBZHQKlPzgKnei11fZQoaAZoCWgPQwjhCijU00f8v5SGlFKUaBVLMmgWR0CpUhD5bhWHdX2UKGgGaAloD0MIYqJBCp7iBsCUhpRSlGgVSzJoFkdAqVHS4rjHXHV9lChoBmgJaA9DCD7rGi0HOgbAlIaUUpRoFUsyaBZHQKlRlyjHn2Z1fZQoaAZoCWgPQwjZ7bPKTMkNwJSGlFKUaBVLMmgWR0CpUVxEfDDTdX2UKGgGaAloD0MIPBHEeTiREcCUhpRSlGgVSzJoFkdAqVOUE1VHWnV9lChoBmgJaA9DCHlYqDXNOwrAlIaUUpRoFUsyaBZHQKlTVk5IYm91fZQoaAZoCWgPQwg7xapBmJsNwJSGlFKUaBVLMmgWR0CpUxqQRwqBdX2UKGgGaAloD0MIjpJX5xiQCsCUhpRSlGgVSzJoFkdAqVLftnf2snV9lChoBmgJaA9DCFvri4S2vBTAlIaUUpRoFUsyaBZHQKlVJiKiwjd1fZQoaAZoCWgPQwhUxOkkW535v5SGlFKUaBVLMmgWR0CpVOgtnPE9dX2UKGgGaAloD0MIucFQhxVOC8CUhpRSlGgVSzJoFkdAqVSsbFS88XV9lChoBmgJaA9DCIvEBDV8SwjAlIaUUpRoFUsyaBZHQKlUccBEKE51fZQoaAZoCWgPQwidZRah2KoNwJSGlFKUaBVLMmgWR0CpVsPszEaVdX2UKGgGaAloD0MI7fSDukjhAcCUhpRSlGgVSzJoFkdAqVaGnMt9QXV9lChoBmgJaA9DCIeowp/hDf2/lIaUUpRoFUsyaBZHQKlWSuyu6mR1fZQoaAZoCWgPQwiH+IctPRoGwJSGlFKUaBVLMmgWR0CpVg+9alk6dX2UKGgGaAloD0MICd/7G7S3AsCUhpRSlGgVSzJoFkdAqVhouVX3g3V9lChoBmgJaA9DCBbbpKKx9gLAlIaUUpRoFUsyaBZHQKlYKs7uDz11fZQoaAZoCWgPQwi7m6c65DYSwJSGlFKUaBVLMmgWR0CpV+8OLBKudX2UKGgGaAloD0MIvkwUIXWbAsCUhpRSlGgVSzJoFkdAqVe05jpcHHV9lChoBmgJaA9DCN5Zu+1CMwbAlIaUUpRoFUsyaBZHQKlaG0FbFCN1fZQoaAZoCWgPQwjn/BTHgScRwJSGlFKUaBVLMmgWR0CpWd3XI2fkdX2UKGgGaAloD0MI0xbX+Ey2/L+UhpRSlGgVSzJoFkdAqVmiHTI/7nV9lChoBmgJaA9DCCwRqP5BpA7AlIaUUpRoFUsyaBZHQKlZZ2dupCN1fZQoaAZoCWgPQwjxDvCkhWsDwJSGlFKUaBVLMmgWR0CpWzM1sLv1dX2UKGgGaAloD0MIwcQfRZ15DMCUhpRSlGgVSzJoFkdAqVr1A/s3Q3V9lChoBmgJaA9DCEYjn1c8NQ3AlIaUUpRoFUsyaBZHQKlauL1EmY11fZQoaAZoCWgPQwiUwVHy6vwGwJSGlFKUaBVLMmgWR0CpWn1psXSCdX2UKGgGaAloD0MITzv8NVlDFMCUhpRSlGgVSzJoFkdAqVwj5Kvmo3V9lChoBmgJaA9DCMl1U8prRQHAlIaUUpRoFUsyaBZHQKlb5VfeDWd1fZQoaAZoCWgPQwh1PGagMj4HwJSGlFKUaBVLMmgWR0CpW6j1GsmwdX2UKGgGaAloD0MIenJNgcwOEMCUhpRSlGgVSzJoFkdAqVttAgPmP3V9lChoBmgJaA9DCIgvE0VIfQbAlIaUUpRoFUsyaBZHQKldE3974SJ1fZQoaAZoCWgPQwiyvRb03vgDwJSGlFKUaBVLMmgWR0CpXNU/fO2RdX2UKGgGaAloD0MI/+px32qd/b+UhpRSlGgVSzJoFkdAqVyZB9kSVXV9lChoBmgJaA9DCNHLKJZb+gzAlIaUUpRoFUsyaBZHQKlcXRKHwgF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f13599e6310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f13599e5740>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681577453864577886, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAw8nWPuq3KTw5Bg0/w8nWPuq3KTw5Bg0/w8nWPuq3KTw5Bg0/w8nWPuq3KTw5Bg0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA6uPZP5Uwn7+ic7E+S8UoP7VzCr8+BVi+cjsUP+aYwr/Wapi+FDN4v6PPGL4kXMI/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADDydY+6rcpPDkGDT+TAqc9e45uOPVaZz3DydY+6rcpPDkGDT+TAqc9e45uOPVaZz3DydY+6rcpPDkGDT+TAqc9e45uOPVaZz3DydY+6rcpPDkGDT+TAqc9e45uOPVaZz2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.41950807 0.01035879 0.5508762 ]\n [0.41950807 0.01035879 0.5508762 ]\n [0.41950807 0.01035879 0.5508762 ]\n [0.41950807 0.01035879 0.5508762 ]]", "desired_goal": "[[ 1.7022679 -1.2436701 0.34658533]\n [ 0.65926045 -0.54082805 -0.2109575 ]\n [ 0.57903206 -1.5202911 -0.2976901 ]\n [-0.9695294 -0.14922957 1.5184369 ]]", "observation": "[[4.1950807e-01 1.0358790e-02 5.5087620e-01 8.1547879e-02 5.6876317e-05\n 5.6483228e-02]\n [4.1950807e-01 1.0358790e-02 5.5087620e-01 8.1547879e-02 5.6876317e-05\n 5.6483228e-02]\n [4.1950807e-01 1.0358790e-02 5.5087620e-01 8.1547879e-02 5.6876317e-05\n 5.6483228e-02]\n [4.1950807e-01 1.0358790e-02 5.5087620e-01 8.1547879e-02 5.6876317e-05\n 5.6483228e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAdYsVvlh4EL7KbZQ+Qsu+PFbNE76auWQ+k5XTPCrBhD0tcr49GIv9vLoep7woMAs+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.1460398 -0.14108407 0.28990012]\n [ 0.02329028 -0.14433798 0.22336426]\n [ 0.02582816 0.06482156 0.09299121]\n [-0.03095011 -0.02040039 0.13592589]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIu2QcI9nj8b+UhpRSlIwBbJRLMowBdJRHQKjfVCBPKuB1fZQoaAZoCWgPQwjFVtC0xErsv5SGlFKUaBVLMmgWR0Co3viAc1fmdX2UKGgGaAloD0MIzNJOzeWG4r+UhpRSlGgVSzJoFkdAqN6hT0g8sHV9lChoBmgJaA9DCIfhI2JKJNm/lIaUUpRoFUsyaBZHQKjeSBjnV5N1fZQoaAZoCWgPQwhKCFbVy2/tv5SGlFKUaBVLMmgWR0Co4J5DRc/udX2UKGgGaAloD0MIvhWJCWr45L+UhpRSlGgVSzJoFkdAqOBC7iADrHV9lChoBmgJaA9DCD2ARX79EO2/lIaUUpRoFUsyaBZHQKjf68cMmWt1fZQoaAZoCWgPQwh+xoUDIVnjv5SGlFKUaBVLMmgWR0Co35J5eJHidX2UKGgGaAloD0MIIvsgy4IJ6b+UhpRSlGgVSzJoFkdAqOG8Cih37nV9lChoBmgJaA9DCG3/ykqTUta/lIaUUpRoFUsyaBZHQKjhYInBtUJ1fZQoaAZoCWgPQwhHO2743fThv5SGlFKUaBVLMmgWR0Co4Qljd56ddX2UKGgGaAloD0MIrFj8prDS5b+UhpRSlGgVSzJoFkdAqOCwLb5/LHV9lChoBmgJaA9DCGPuWkI+aOW/lIaUUpRoFUsyaBZHQKjiyt7KJVN1fZQoaAZoCWgPQwiKWMSwwxjov5SGlFKUaBVLMmgWR0Co4m8Z9/jLdX2UKGgGaAloD0MIcH1Yb9SK4b+UhpRSlGgVSzJoFkdAqOIYBDG96HV9lChoBmgJaA9DCLKC34YYL+2/lIaUUpRoFUsyaBZHQKjhvtKqXF91fZQoaAZoCWgPQwi8dJMYBNbjv5SGlFKUaBVLMmgWR0Co4+E0BOpLdX2UKGgGaAloD0MIfgBSmzg56L+UhpRSlGgVSzJoFkdAqOOFyNn5BXV9lChoBmgJaA9DCPn02JYBZ+m/lIaUUpRoFUsyaBZHQKjjLp0OmSB1fZQoaAZoCWgPQwipiT4fZcTbv5SGlFKUaBVLMmgWR0Co4tVYyO7ydX2UKGgGaAloD0MIRG/x8J4D27+UhpRSlGgVSzJoFkdAqOUIHVwxWXV9lChoBmgJaA9DCLvSMlLvKeS/lIaUUpRoFUsyaBZHQKjkrOJtSAJ1fZQoaAZoCWgPQwiOsRNeglPXv5SGlFKUaBVLMmgWR0Co5FWbwz+FdX2UKGgGaAloD0MIuM1UiEdi8b+UhpRSlGgVSzJoFkdAqOP9LJ0W/XV9lChoBmgJaA9DCN+LL9rjhd2/lIaUUpRoFUsyaBZHQKjmG+xnnMd1fZQoaAZoCWgPQwg51O/C1mzZv5SGlFKUaBVLMmgWR0Co5cBUBGQTdX2UKGgGaAloD0MIuOhkqfV+2L+UhpRSlGgVSzJoFkdAqOVpPAO8TXV9lChoBmgJaA9DCJSI8C+CRuK/lIaUUpRoFUsyaBZHQKjlEBHTZxt1fZQoaAZoCWgPQwjxS/28qUjbv5SGlFKUaBVLMmgWR0Co5yuM+/xldX2UKGgGaAloD0MIg09z8iIT0r+UhpRSlGgVSzJoFkdAqObQXl8w6HV9lChoBmgJaA9DCN44Kcx7nNe/lIaUUpRoFUsyaBZHQKjmeUYbbUR1fZQoaAZoCWgPQwiNnIU97fDgv5SGlFKUaBVLMmgWR0Co5iAGr0aqdX2UKGgGaAloD0MIwJfCg2bX4r+UhpRSlGgVSzJoFkdAqOhEBEKE4HV9lChoBmgJaA9DCAVTzaylgOC/lIaUUpRoFUsyaBZHQKjn6CYkVvd1fZQoaAZoCWgPQwhlG7gDdUrjv5SGlFKUaBVLMmgWR0Co55D6N2kjdX2UKGgGaAloD0MIoOHNGryv1r+UhpRSlGgVSzJoFkdAqOc3wVj7RHV9lChoBmgJaA9DCDdUjPM3ody/lIaUUpRoFUsyaBZHQKjpicCHRCx1fZQoaAZoCWgPQwg1fuGVJE/pv5SGlFKUaBVLMmgWR0Co6S8mKIi1dX2UKGgGaAloD0MIxyx7Etgc5L+UhpRSlGgVSzJoFkdAqOjYzch1T3V9lChoBmgJaA9DCJUp5iDoaNq/lIaUUpRoFUsyaBZHQKjogLLIPsl1fZQoaAZoCWgPQwiLw5lfzQHYv5SGlFKUaBVLMmgWR0Co60HAIppfdX2UKGgGaAloD0MIFD/G3LWE5L+UhpRSlGgVSzJoFkdAqOrnDk2gnXV9lChoBmgJaA9DCEz9vKlIhdS/lIaUUpRoFUsyaBZHQKjqkgX/HYJ1fZQoaAZoCWgPQwg+eO3ShsPAv5SGlFKUaBVLMmgWR0Co6jsLfDUFdX2UKGgGaAloD0MIx5v8Fp0s0r+UhpRSlGgVSzJoFkdAqOz6eGwiaHV9lChoBmgJaA9DCNf6IqEt596/lIaUUpRoFUsyaBZHQKjsn3Dej211fZQoaAZoCWgPQwgCEk2giEXcv5SGlFKUaBVLMmgWR0Co7EkTg2qDdX2UKGgGaAloD0MI81oJ3SXx6b+UhpRSlGgVSzJoFkdAqOvwDNhVl3V9lChoBmgJaA9DCPTcQlciUMG/lIaUUpRoFUsyaBZHQKjuyTyJ9Ap1fZQoaAZoCWgPQwhBCwkYXd7jv5SGlFKUaBVLMmgWR0Co7m4nndO7dX2UKGgGaAloD0MI4UBIFjAB5b+UhpRSlGgVSzJoFkdAqO4XgNwzcnV9lChoBmgJaA9DCKNWmL7XEN+/lIaUUpRoFUsyaBZHQKjtvzJ6po91fZQoaAZoCWgPQwiLG7eYnxvkv5SGlFKUaBVLMmgWR0Co8LiADq4ZdX2UKGgGaAloD0MId2aC4VxD47+UhpRSlGgVSzJoFkdAqPBd1fVqe3V9lChoBmgJaA9DCB/WG7XCdPK/lIaUUpRoFUsyaBZHQKjwB7O3UhF1fZQoaAZoCWgPQwgHDJI+rSLgv5SGlFKUaBVLMmgWR0Co76+bd8ArdX2UKGgGaAloD0MI2nOZmgRv2L+UhpRSlGgVSzJoFkdAqPKwzHjp93V9lChoBmgJaA9DCMWrrG2Kx+O/lIaUUpRoFUsyaBZHQKjyVdTo+wF1fZQoaAZoCWgPQwjtKqT8pNrav5SGlFKUaBVLMmgWR0Co8f/ag261dX2UKGgGaAloD0MIaeTziqce0b+UhpRSlGgVSzJoFkdAqPGnMKTjenV9lChoBmgJaA9DCKwahLndS+S/lIaUUpRoFUsyaBZHQKj0FmWdEst1fZQoaAZoCWgPQwgzU1p/S4Dlv5SGlFKUaBVLMmgWR0Co87rRKHwgdX2UKGgGaAloD0MIVP61vHK94L+UhpRSlGgVSzJoFkdAqPNjjvNNanV9lChoBmgJaA9DCL1tpkI8kuK/lIaUUpRoFUsyaBZHQKjzCkSElE91fZQoaAZoCWgPQwgq5bUSusvov5SGlFKUaBVLMmgWR0Co9SOwgTysdX2UKGgGaAloD0MIqtTsgVZg57+UhpRSlGgVSzJoFkdAqPTIlY2bX3V9lChoBmgJaA9DCEFIFjCBW+q/lIaUUpRoFUsyaBZHQKj0cX9itq51fZQoaAZoCWgPQwhNui2RC07kv5SGlFKUaBVLMmgWR0Co9BggxJumdX2UKGgGaAloD0MIYytoWmLl4L+UhpRSlGgVSzJoFkdAqPY+LcbiqHV9lChoBmgJaA9DCMMq3sg88uG/lIaUUpRoFUsyaBZHQKj14r4Fia11fZQoaAZoCWgPQwhnD7QCQ9bgv5SGlFKUaBVLMmgWR0Co9YuSGJvYdX2UKGgGaAloD0MIbqXXZmMl4L+UhpRSlGgVSzJoFkdAqPUyUqx1PnV9lChoBmgJaA9DCKa0/pYA/OW/lIaUUpRoFUsyaBZHQKj3UQf6oEV1fZQoaAZoCWgPQwhxVkRN9PnUv5SGlFKUaBVLMmgWR0Co9vXF1jiGdX2UKGgGaAloD0MIaRoUzQNY6L+UhpRSlGgVSzJoFkdAqPaerhisn3V9lChoBmgJaA9DCMN95NakW+e/lIaUUpRoFUsyaBZHQKj2RVXFLnN1fZQoaAZoCWgPQwg4vvbMkgDiv5SGlFKUaBVLMmgWR0Co+Gq/EfkndX2UKGgGaAloD0MI1H0AUpu46b+UhpRSlGgVSzJoFkdAqPgPIuGsWHV9lChoBmgJaA9DCFTE6SRbHfG/lIaUUpRoFUsyaBZHQKj3uAAAAAB1fZQoaAZoCWgPQwg826M33Effv5SGlFKUaBVLMmgWR0Co916sySFHdX2UKGgGaAloD0MIJ71vfO2Zy7+UhpRSlGgVSzJoFkdAqPlq7NB4U3V9lChoBmgJaA9DCGA97lutE9m/lIaUUpRoFUsyaBZHQKj5DxS5y2h1fZQoaAZoCWgPQwh/vcKC+wHev5SGlFKUaBVLMmgWR0Co+Lep4rz5dX2UKGgGaAloD0MIFTYDXJCt4b+UhpRSlGgVSzJoFkdAqPheglF+eHV9lChoBmgJaA9DCBmrzf+rjt+/lIaUUpRoFUsyaBZHQKj6qavzOHF1fZQoaAZoCWgPQwg9Rnnm5bDXv5SGlFKUaBVLMmgWR0Co+k5O8CgcdX2UKGgGaAloD0MIw7gbRGtFwb+UhpRSlGgVSzJoFkdAqPn3KB/ZunV9lChoBmgJaA9DCApkdha90+W/lIaUUpRoFUsyaBZHQKj5nqcEvCd1fZQoaAZoCWgPQwgB3CxeLAzev5SGlFKUaBVLMmgWR0Co+68RDkU9dX2UKGgGaAloD0MIF7g81oyM5b+UhpRSlGgVSzJoFkdAqPtUjkdWAHV9lChoBmgJaA9DCIWX4NQHkuC/lIaUUpRoFUsyaBZHQKj6/dvbXYl1fZQoaAZoCWgPQwgKFLGIYYfXv5SGlFKUaBVLMmgWR0Co+qUHIIWydX2UKGgGaAloD0MIpyA/G7lu0r+UhpRSlGgVSzJoFkdAqPy8yFfzBnV9lChoBmgJaA9DCAWGrG71nNC/lIaUUpRoFUsyaBZHQKj8YScLBsR1fZQoaAZoCWgPQwgnhA66hEPkv5SGlFKUaBVLMmgWR0Co/Aneaa1DdX2UKGgGaAloD0MIuYrFbwqr4L+UhpRSlGgVSzJoFkdAqPuwdELH/HV9lChoBmgJaA9DCDOHpBZKJt2/lIaUUpRoFUsyaBZHQKj91OW0JF91fZQoaAZoCWgPQwimnC/2XnzTv5SGlFKUaBVLMmgWR0Co/XkZiuuBdX2UKGgGaAloD0MIX85sV+iDzb+UhpRSlGgVSzJoFkdAqP0hysCDEnV9lChoBmgJaA9DCJTeN772zN2/lIaUUpRoFUsyaBZHQKj8yG/N7jV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 31250, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -0.48036287707218434, "std_reward": 0.2393936182346206, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-15T17:46:27.537719"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2381
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:289537ef6e57a6c68a226d4db385c268a736d39c6003bc160aab6ca057cda9ce
|
3 |
size 2381
|