File size: 4,590 Bytes
752880a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d742052
 
752880a
d742052
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
752880a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
---
library_name: transformers
license: mit
base_model: MBZUAI/speecht5_tts_clartts_ar
tags:
- generated_from_trainer
model-index:
- name: speecht5_finetuned_essam2_ar
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# speecht5_finetuned_essam2_ar

This model is a fine-tuned version of [MBZUAI/speecht5_tts_clartts_ar](https://huggingface.co/MBZUAI/speecht5_tts_clartts_ar) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3333
# Uses
## ๐Ÿค— Transformers Usage

You can run ArTST TTS locally with the ๐Ÿค— Transformers library.

1. First install the ๐Ÿค— [Transformers library](https://github.com/huggingface/transformers), sentencepiece, soundfile and datasets(optional):

```
pip install --upgrade pip
pip install --upgrade transformers sentencepiece datasets[audio]
```
2. Run inference via the `Text-to-Speech` (TTS) pipeline. You can access the Arabic SPeechT5 model via the TTS pipeline in just a few lines of code!

```python
from transformers import pipeline
from datasets import load_dataset
import soundfile as sf

synthesiser = pipeline("text-to-speech", "("Messam174/speecht5_finetuned_essam2_ar")

embeddings_dataset = load_dataset("herwoww/arabic_xvector_embeddings", split="validation")
speaker_embedding = torch.tensor(embeddings_dataset[105]["speaker_embeddings"]).unsqueeze(0)
# You can replace this embedding with your own as well.

speech = synthesiser("ุงู„ุณู„ุงู… ุนู„ูŠูƒู… ูˆุฑุญู…ุฉ ุงู„ู„ู‡ ูˆุจุฑูƒุงุชู‡ ุญูŠุงูƒู… ุงู„ู„ู‡ ุฌู…ูŠุนุง", forward_params={"speaker_embeddings": speaker_embedding})
# ArTST is trained without diacritics.

sf.write("speech.wav", speech["audio"], samplerate=speech["sampling_rate"])
```
3. Run inference via the Transformers modelling code - You can use the processor + generate code to convert text into a mono 16 kHz speech waveform for more fine-grained control.

```python
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
from datasets import load_dataset
import torch
import soundfile as sf
from pydub import AudioSegment

# Check if GPU is available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")

# Load processor, model, and vocoder
processor = SpeechT5Processor.from_pretrained("Messam174/speecht5_finetuned_essam2_ar")
model = SpeechT5ForTextToSpeech.from_pretrained("Messam174/speecht5_finetuned_essam2_ar").to(device)
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)

# Prepare inputs
inputs = processor(
    text="ุงู„ุณู„ุงู… ุนู„ูŠูƒู… ูˆุฑุญู…ุฉ ุงู„ู„ู‡ ูˆุจุฑูƒุงุชู‡ ุญูŠุงูƒู… ุงู„ู„ู‡ ุฌู…ูŠุนุง", return_tensors="pt"
).to(device)

# Load xvector containing speaker's voice characteristics from a dataset
embeddings_dataset = load_dataset("herwoww/arabic_xvector_embeddings", split="validation")
speaker_embedding = torch.tensor(embeddings_dataset[105]["speaker_embeddings"]).unsqueeze(0).to(device)

# Generate speech
with torch.no_grad():  # Disable gradient computation for inference
    speech = model.generate_speech(inputs["input_ids"], speaker_embedding, vocoder=vocoder)

# Save the output as WAV
wav_file = "speech.wav"
sf.write(wav_file, speech.cpu().numpy(), samplerate=16000)
print(f"Speech saved to '{wav_file}'")



```
## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 500
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.3806        | 0.3742 | 100  | 0.3452          |
| 0.3873        | 0.7484 | 200  | 0.3487          |
| 0.3788        | 1.1225 | 300  | 0.3441          |
| 0.3676        | 1.4967 | 400  | 0.3380          |
| 0.3668        | 1.8709 | 500  | 0.3333          |


### Framework versions

- Transformers 4.46.3
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.20.3