File size: 6,235 Bytes
c6e9e37
 
 
 
 
 
918a792
 
c6e9e37
 
 
 
 
 
918a792
c6e9e37
 
 
 
 
 
2fbc0bc
c6e9e37
92438cc
2fbc0bc
 
 
957b47b
c6e9e37
 
 
 
 
 
 
 
 
 
 
 
 
918a792
 
 
 
c6e9e37
 
 
 
918a792
c6e9e37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
918a792
c6e9e37
 
 
 
 
957b47b
2fbc0bc
918a792
2fbc0bc
918a792
 
 
 
 
 
 
2fbc0bc
957b47b
c6e9e37
 
 
 
 
 
 
918a792
c6e9e37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
918a792
c6e9e37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
918a792
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
---
library_name: transformers
tags:
- unsloth
- trl
- sft
language:
- it
---

# Model Card for Model ID

<!-- Provide a quick summary of what the model is/does. -->

ItalIA is a LLM trained for the Italian language and based on Llama3-8b.


## Model Details

### Model Description

ItalIA is a state-of-the-art language model specifically trained for the Italian language using unsloth, leveraging the latest advancements in the LLM frameworks llama3. This model aims to provide highly accurate and context-aware natural language understanding and generation, making it ideal for a wide range of applications from automated customer support to content creation.

- **Developed by:** Davide Pizzo
- **Model type:** Transformer-based Large Language Model
- **Language(s) (NLP):** Italian
- **License:** Other
- **Finetuned from model:** llama3-8b

### Model Sources [optional]

<!-- Provide the basic links for the model. -->

- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]

## Uses

<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->


ItalIA can be directly integrated into applications requiring natural language processing in Italian, including but not limited to text summarization, question answering, and conversational agents.


### Direct Use

<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->

This model serves as a powerful italian base for fine-tuning on specific tasks such as legal document analysis, medical record interpretation, and more specialized forms of conversational AI tailored to specific industries.

### Downstream Use [optional]

<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->

[More Information Needed]

### Out-of-Scope Use

<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->

[More Information Needed]

## Bias, Risks, and Limitations

<!-- This section is meant to convey both technical and sociotechnical limitations. -->


### Recommendations

<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->

Users should be aware of the potential for biased outputs based on the training data, particularly in scenarios involving regional linguistic variations within Italy. 

## How to Get Started with the Model

Use the code below to get started with the model.

**
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "MethosPi/llama3-8b-italIA-unsloth-merged"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

text = "Inserisci qui il tuo testo in italiano."
input_ids = tokenizer.encode(text, return_tensors="pt")
output = model.generate(input_ids)

print(tokenizer.decode(output[0], skip_special_tokens=True))
**

## Training Details

### Training Data

<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->

The model was trained on a diverse corpus of Italian texts, including literature, news articles, and web content, ensuring a broad understanding of the language.

### Training Procedure

<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->

#### Preprocessing [optional]

[More Information Needed]


#### Training Hyperparameters

- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->

#### Speeds, Sizes, Times [optional]

<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->

[More Information Needed]

## Evaluation

<!-- This section describes the evaluation protocols and provides the results. -->

### Testing Data, Factors & Metrics

#### Testing Data

<!-- This should link to a Dataset Card if possible. -->

[More Information Needed]

#### Factors

<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->

[More Information Needed]

#### Metrics

<!-- These are the evaluation metrics being used, ideally with a description of why. -->

[More Information Needed]

### Results

[More Information Needed]

#### Summary



## Model Examination [optional]

<!-- Relevant interpretability work for the model goes here -->

[More Information Needed]

## Environmental Impact

<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->

Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).

- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]

## Technical Specifications [optional]

### Model Architecture and Objective

[More Information Needed]

### Compute Infrastructure

[More Information Needed]

#### Hardware

[More Information Needed]

#### Software

unsloth

## Citation [optional]

<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**

[More Information Needed]

**APA:**

[More Information Needed]

## Glossary [optional]

<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->

[More Information Needed]

## More Information [optional]

[More Information Needed]

## Model Card Authors [optional]

[More Information Needed]

## Model Card Contact

For any question, contact me [pizzodavide93@gmail.com]