File size: 3,321 Bytes
18d5a7c
 
 
 
 
 
 
 
 
 
e919b68
 
c63d4c3
 
 
 
 
 
 
 
 
e919b68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
license: cc-by-nc-sa-4.0
pipeline_tag: object-detection
tags:
- yolov8
- object-detection
datasets:
- MichalMlodawski/closed-open-eyes
language:
- en
---

**Links to Space:**
https://huggingface.co/spaces/MichalMlodawski/closed-open-eyes-detection

**Eval:**

| Epoch | Train Box Loss | Train Cls Loss | Train DFL Loss | Precision (B) | Recall (B) | mAP50 (B) | mAP50-95 (B) | Val Box Loss | Val Cls Loss | Val DFL Loss | LR PG0 | LR PG1 | LR PG2 |
|-------|----------------|----------------|----------------|---------------|------------|-----------|--------------|--------------|--------------|--------------|--------|--------|--------|
| 100   | 1.0201         | 0.4718         | 0.84219        | 0.95394       | 0.93356    | 0.96767   | 0.66184      | 0.98246      | 0.45574      | 0.83703      | 0.000199 | 0.000199 | 0.000199 |

**Example code to run the model:**

    import os
    from pathlib import Path
    from ultralytics import YOLO
    import cv2
    import logging
    import argparse
    
    def setup_logging():
        logging.basicConfig(level=logging.INFO, 
                            format='%(asctime)s - %(levelname)s - %(message)s')
    
    def process_images(model_path, test_images_path):
        try:
            # Path to the results directory
            results_path = os.path.join(test_images_path, 'result')
            
            # Create the results folder
            os.makedirs(results_path, exist_ok=True)
            logging.info(f'Created results directory: {results_path}')
            
            # Load the model
            model = YOLO(model_path)
            logging.info(f'Loaded model from: {model_path}')
            
            # Process images
            for img_file in Path(test_images_path).glob('*.*'):
                if img_file.suffix.lower() in ['.jpg', '.jpeg', '.png']:  # Supports JPG, JPEG, and PNG formats
                    logging.info(f'Processing file: {img_file}')
                    # Detect objects in the image
                    results = model(img_file)
                    
                    for result in results:
                        # Get the result image with detections drawn
                        result_img = result.plot()
                        
                        # Save the result image to the results_path folder
                        result_image_path = os.path.join(results_path, img_file.name)
                        cv2.imwrite(result_image_path, result_img)
                        logging.info(f'Saved result image to: {result_image_path}')
            
            logging.info("Image processing completed.")
        except Exception as e:
            logging.error(f'An error occurred: {e}')
    
    def main():
        parser = argparse.ArgumentParser(description='Process images using YOLO model.')
        parser.add_argument('model_path', type=str, help='Path to the YOLO model.')
        parser.add_argument('test_images_path', type=str, help='Path to the directory containing test images.')
        
        args = parser.parse_args()
        setup_logging()
        
        process_images(args.model_path, args.test_images_path)
    
    if __name__ == "__main__":
        main()

**Command to run the program:**

    python script_name.py path/to/your/yolo_model.pt path/to/test/images