MicroPanda123 commited on
Commit
190fde1
·
1 Parent(s): a226856

Delete model.py

Browse files
Files changed (1) hide show
  1. model.py +0 -330
model.py DELETED
@@ -1,330 +0,0 @@
1
- """
2
- Full definition of a GPT Language Model, all of it in this single file.
3
- References:
4
- 1) the official GPT-2 TensorFlow implementation released by OpenAI:
5
- https://github.com/openai/gpt-2/blob/master/src/model.py
6
- 2) huggingface/transformers PyTorch implementation:
7
- https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py
8
- """
9
-
10
- import math
11
- import inspect
12
- from dataclasses import dataclass
13
-
14
- import torch
15
- import torch.nn as nn
16
- from torch.nn import functional as F
17
-
18
- class LayerNorm(nn.Module):
19
- """ LayerNorm but with an optional bias. PyTorch doesn't support simply bias=False """
20
-
21
- def __init__(self, ndim, bias):
22
- super().__init__()
23
- self.weight = nn.Parameter(torch.ones(ndim))
24
- self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None
25
-
26
- def forward(self, input):
27
- return F.layer_norm(input, self.weight.shape, self.weight, self.bias, 1e-5)
28
-
29
- class CausalSelfAttention(nn.Module):
30
-
31
- def __init__(self, config):
32
- super().__init__()
33
- assert config.n_embd % config.n_head == 0
34
- # key, query, value projections for all heads, but in a batch
35
- self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
36
- # output projection
37
- self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
38
- # regularization
39
- self.attn_dropout = nn.Dropout(config.dropout)
40
- self.resid_dropout = nn.Dropout(config.dropout)
41
- self.n_head = config.n_head
42
- self.n_embd = config.n_embd
43
- self.dropout = config.dropout
44
- # flash attention make GPU go brrrrr but support is only in PyTorch >= 2.0
45
- self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention')
46
- if not self.flash:
47
- print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0")
48
- # causal mask to ensure that attention is only applied to the left in the input sequence
49
- self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size))
50
- .view(1, 1, config.block_size, config.block_size))
51
-
52
- def forward(self, x):
53
- B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
54
-
55
- # calculate query, key, values for all heads in batch and move head forward to be the batch dim
56
- q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
57
- k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
58
- q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
59
- v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
60
-
61
- # causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
62
- if self.flash:
63
- # efficient attention using Flash Attention CUDA kernels
64
- y = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=self.dropout if self.training else 0, is_causal=True)
65
- else:
66
- # manual implementation of attention
67
- att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
68
- att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf'))
69
- att = F.softmax(att, dim=-1)
70
- att = self.attn_dropout(att)
71
- y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
72
- y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
73
-
74
- # output projection
75
- y = self.resid_dropout(self.c_proj(y))
76
- return y
77
-
78
- class MLP(nn.Module):
79
-
80
- def __init__(self, config):
81
- super().__init__()
82
- self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias)
83
- self.gelu = nn.GELU()
84
- self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias)
85
- self.dropout = nn.Dropout(config.dropout)
86
-
87
- def forward(self, x):
88
- x = self.c_fc(x)
89
- x = self.gelu(x)
90
- x = self.c_proj(x)
91
- x = self.dropout(x)
92
- return x
93
-
94
- class Block(nn.Module):
95
-
96
- def __init__(self, config):
97
- super().__init__()
98
- self.ln_1 = LayerNorm(config.n_embd, bias=config.bias)
99
- self.attn = CausalSelfAttention(config)
100
- self.ln_2 = LayerNorm(config.n_embd, bias=config.bias)
101
- self.mlp = MLP(config)
102
-
103
- def forward(self, x):
104
- x = x + self.attn(self.ln_1(x))
105
- x = x + self.mlp(self.ln_2(x))
106
- return x
107
-
108
- @dataclass
109
- class GPTConfig:
110
- block_size: int = 1024
111
- vocab_size: int = 50304 # GPT-2 vocab_size of 50257, padded up to nearest multiple of 64 for efficiency
112
- n_layer: int = 12
113
- n_head: int = 12
114
- n_embd: int = 768
115
- dropout: float = 0.0
116
- bias: bool = True # True: bias in Linears and LayerNorms, like GPT-2. False: a bit better and faster
117
-
118
- class GPT(nn.Module):
119
-
120
- def __init__(self, config):
121
- super().__init__()
122
- assert config.vocab_size is not None
123
- assert config.block_size is not None
124
- self.config = config
125
-
126
- self.transformer = nn.ModuleDict(dict(
127
- wte = nn.Embedding(config.vocab_size, config.n_embd),
128
- wpe = nn.Embedding(config.block_size, config.n_embd),
129
- drop = nn.Dropout(config.dropout),
130
- h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
131
- ln_f = LayerNorm(config.n_embd, bias=config.bias),
132
- ))
133
- self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
134
- # with weight tying when using torch.compile() some warnings get generated:
135
- # "UserWarning: functional_call was passed multiple values for tied weights.
136
- # This behavior is deprecated and will be an error in future versions"
137
- # not 100% sure what this is, so far seems to be harmless. TODO investigate
138
- self.transformer.wte.weight = self.lm_head.weight # https://paperswithcode.com/method/weight-tying
139
-
140
- # init all weights
141
- self.apply(self._init_weights)
142
- # apply special scaled init to the residual projections, per GPT-2 paper
143
- for pn, p in self.named_parameters():
144
- if pn.endswith('c_proj.weight'):
145
- torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * config.n_layer))
146
-
147
- # report number of parameters
148
- print("number of parameters: %.2fM" % (self.get_num_params()/1e6,))
149
-
150
- def get_num_params(self, non_embedding=True):
151
- """
152
- Return the number of parameters in the model.
153
- For non-embedding count (default), the position embeddings get subtracted.
154
- The token embeddings would too, except due to the parameter sharing these
155
- params are actually used as weights in the final layer, so we include them.
156
- """
157
- n_params = sum(p.numel() for p in self.parameters())
158
- if non_embedding:
159
- n_params -= self.transformer.wpe.weight.numel()
160
- return n_params
161
-
162
- def _init_weights(self, module):
163
- if isinstance(module, nn.Linear):
164
- torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
165
- if module.bias is not None:
166
- torch.nn.init.zeros_(module.bias)
167
- elif isinstance(module, nn.Embedding):
168
- torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
169
-
170
- def forward(self, idx, targets=None):
171
- device = idx.device
172
- b, t = idx.size()
173
- assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
174
- pos = torch.arange(0, t, dtype=torch.long, device=device) # shape (t)
175
-
176
- # forward the GPT model itself
177
- tok_emb = self.transformer.wte(idx) # token embeddings of shape (b, t, n_embd)
178
- pos_emb = self.transformer.wpe(pos) # position embeddings of shape (t, n_embd)
179
- x = self.transformer.drop(tok_emb + pos_emb)
180
- for block in self.transformer.h:
181
- x = block(x)
182
- x = self.transformer.ln_f(x)
183
-
184
- if targets is not None:
185
- # if we are given some desired targets also calculate the loss
186
- logits = self.lm_head(x)
187
- loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
188
- else:
189
- # inference-time mini-optimization: only forward the lm_head on the very last position
190
- logits = self.lm_head(x[:, [-1], :]) # note: using list [-1] to preserve the time dim
191
- loss = None
192
-
193
- return logits, loss
194
-
195
- def crop_block_size(self, block_size):
196
- # model surgery to decrease the block size if necessary
197
- # e.g. we may load the GPT2 pretrained model checkpoint (block size 1024)
198
- # but want to use a smaller block size for some smaller, simpler model
199
- assert block_size <= self.config.block_size
200
- self.config.block_size = block_size
201
- self.transformer.wpe.weight = nn.Parameter(self.transformer.wpe.weight[:block_size])
202
- for block in self.transformer.h:
203
- if hasattr(block.attn, 'bias'):
204
- block.attn.bias = block.attn.bias[:,:,:block_size,:block_size]
205
-
206
- @classmethod
207
- def from_pretrained(cls, model_type, override_args=None):
208
- assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
209
- override_args = override_args or {} # default to empty dict
210
- # only dropout can be overridden see more notes below
211
- assert all(k == 'dropout' for k in override_args)
212
- from transformers import GPT2LMHeadModel
213
- print("loading weights from pretrained gpt: %s" % model_type)
214
-
215
- # n_layer, n_head and n_embd are determined from model_type
216
- config_args = {
217
- 'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params
218
- 'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params
219
- 'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params
220
- 'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params
221
- }[model_type]
222
- print("forcing vocab_size=50257, block_size=1024, bias=True")
223
- config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints
224
- config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints
225
- config_args['bias'] = True # always True for GPT model checkpoints
226
- # we can override the dropout rate, if desired
227
- if 'dropout' in override_args:
228
- print(f"overriding dropout rate to {override_args['dropout']}")
229
- config_args['dropout'] = override_args['dropout']
230
- # create a from-scratch initialized minGPT model
231
- config = GPTConfig(**config_args)
232
- model = GPT(config)
233
- sd = model.state_dict()
234
- sd_keys = sd.keys()
235
- sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param
236
-
237
- # init a huggingface/transformers model
238
- model_hf = GPT2LMHeadModel.from_pretrained(model_type)
239
- sd_hf = model_hf.state_dict()
240
-
241
- # copy while ensuring all of the parameters are aligned and match in names and shapes
242
- sd_keys_hf = sd_hf.keys()
243
- sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer
244
- sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer)
245
- transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
246
- # basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
247
- # this means that we have to transpose these weights when we import them
248
- assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
249
- for k in sd_keys_hf:
250
- if any(k.endswith(w) for w in transposed):
251
- # special treatment for the Conv1D weights we need to transpose
252
- assert sd_hf[k].shape[::-1] == sd[k].shape
253
- with torch.no_grad():
254
- sd[k].copy_(sd_hf[k].t())
255
- else:
256
- # vanilla copy over the other parameters
257
- assert sd_hf[k].shape == sd[k].shape
258
- with torch.no_grad():
259
- sd[k].copy_(sd_hf[k])
260
-
261
- return model
262
-
263
- def configure_optimizers(self, weight_decay, learning_rate, betas, device_type):
264
- # start with all of the candidate parameters
265
- param_dict = {pn: p for pn, p in self.named_parameters()}
266
- # filter out those that do not require grad
267
- param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
268
- # create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.
269
- # i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't.
270
- decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
271
- nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
272
- optim_groups = [
273
- {'params': decay_params, 'weight_decay': weight_decay},
274
- {'params': nodecay_params, 'weight_decay': 0.0}
275
- ]
276
- num_decay_params = sum(p.numel() for p in decay_params)
277
- num_nodecay_params = sum(p.numel() for p in nodecay_params)
278
- print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters")
279
- print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters")
280
- # Create AdamW optimizer and use the fused version if it is available
281
- fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
282
- use_fused = fused_available and device_type == 'cuda'
283
- extra_args = dict(fused=True) if use_fused else dict()
284
- optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=betas, **extra_args)
285
- print(f"using fused AdamW: {use_fused}")
286
-
287
- return optimizer
288
-
289
- def estimate_mfu(self, fwdbwd_per_iter, dt):
290
- """ estimate model flops utilization (MFU) in units of A100 bfloat16 peak FLOPS """
291
- # first estimate the number of flops we do per iteration.
292
- # see PaLM paper Appendix B as ref: https://arxiv.org/abs/2204.02311
293
- N = self.get_num_params()
294
- cfg = self.config
295
- L, H, Q, T = cfg.n_layer, cfg.n_head, cfg.n_embd//cfg.n_head, cfg.block_size
296
- flops_per_token = 6*N + 12*L*H*Q*T
297
- flops_per_fwdbwd = flops_per_token * T
298
- flops_per_iter = flops_per_fwdbwd * fwdbwd_per_iter
299
- # express our flops throughput as ratio of A100 bfloat16 peak flops
300
- flops_achieved = flops_per_iter * (1.0/dt) # per second
301
- flops_promised = 312e12 # A100 GPU bfloat16 peak flops is 312 TFLOPS
302
- mfu = flops_achieved / flops_promised
303
- return mfu
304
-
305
- @torch.no_grad()
306
- def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
307
- """
308
- Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete
309
- the sequence max_new_tokens times, feeding the predictions back into the model each time.
310
- Most likely you'll want to make sure to be in model.eval() mode of operation for this.
311
- """
312
- for _ in range(max_new_tokens):
313
- # if the sequence context is growing too long we must crop it at block_size
314
- idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:]
315
- # forward the model to get the logits for the index in the sequence
316
- logits, _ = self(idx_cond)
317
- # pluck the logits at the final step and scale by desired temperature
318
- logits = logits[:, -1, :] / temperature
319
- # optionally crop the logits to only the top k options
320
- if top_k is not None:
321
- v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
322
- logits[logits < v[:, [-1]]] = -float('Inf')
323
- # apply softmax to convert logits to (normalized) probabilities
324
- probs = F.softmax(logits, dim=-1)
325
- # sample from the distribution
326
- idx_next = torch.multinomial(probs, num_samples=1)
327
- # append sampled index to the running sequence and continue
328
- idx = torch.cat((idx, idx_next), dim=1)
329
-
330
- return idx