File size: 3,067 Bytes
7705825 795259c b645603 7705825 c5ce04c d0eb494 fc909a1 d0eb494 215304c 7917561 d0eb494 7917561 d0eb494 a29392c fa78651 a29392c fa78651 a29392c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
language:
- ar
widget:
- text: "context: الثورة الجزائرية أو ثورة المليون شهيد، اندلعت في 1 نوفمبر 1954 ضد المستعمر الفرنسي ودامت 7 سنوات ونصف. استشهد فيها أكثر من مليون ونصف مليون جزائري answer: 7 سنوات ونصف </s>
"
- text: "context: اسكتلندا دولة في شمال غرب أوروبا، تعتبر جزء من الدول الأربع المكونة المملكة المتحدة. تحتل الثلث الشمالي من جزيرة بريطانيا العظمى وتحدها جنوبا إنجلترا ويحدها شرقا بحر الشمال وغربا المحيط الأطلسي. عاصمتها أدنبرة، وأهم مدنها وأكبرها مدينة غلاسكو. كانت اسكتلندا مملكة مستقلة حتى 1 مايو 1707 answer: أدنبرة </s>"
---
# Arabic Question generation Model
[AraT5-Base Model](https://huggingface.co/UBC-NLP/AraT5-base) fine-tuned on Arabic Question-Answering Dataset for **Question generation**
Get the Question from given Context and a Answer
## Details of Ara-T5
The **Ara-T5** model was presented in [AraT5: Text-to-Text Transformers for Arabic Language Generation](https://arxiv.org/abs/2109.12068) by *El Moatez Billah Nagoudi, AbdelRahim Elmadany, Muhammad Abdul-Mageed*
## Model in Action 🚀
```python
from transformers import AutoTokenizer,AutoModelForSeq2SeqLM
model = AutoModelForSeq2SeqLM.from_pretrained("Mihakram/Arabic_Question_Generation")
tokenizer = AutoTokenizer.from_pretrained("Mihakram/Arabic_Question_Generation")
def get_question(context,answer):
text="context: " +context + " " + "answer: " + answer + " </s>"
text_encoding = tokenizer.encode_plus(
text,return_tensors="pt"
)
model.eval()
generated_ids = model.generate(
input_ids=text_encoding['input_ids'],
attention_mask=text_encoding['attention_mask'],
max_length=64,
num_beams=5,
num_return_sequences=1
)
return tokenizer.decode(generated_ids[0],skip_special_tokens=True,clean_up_tokenization_spaces=True).replace('question: ',' ')
context="الثورة الجزائرية أو ثورة المليون شهيد، اندلعت في 1 نوفمبر 1954 ضد المستعمر الفرنسي ودامت 7 سنوات ونصف. استشهد فيها أكثر من مليون ونصف مليون جزائري"
answer =" 7 سنوات ونصف"
get_question(context,answer)
#output : question="كم استمرت الثورة الجزائرية؟ "
```
## Citation
If you want to cite this model you can use this:
```bibtex
@misc{Mihakram/,
title={},
author={Mihoubi, Ibrir},
publisher={Hugging Face},
journal={Hugging Face Hub},
howpublished={\url{https://huggingface.co/}},
year={2022}
}
```
## Contacts
**Mihoubi Akram Fawzi**: [Linkedin](https://www.linkedin.com/in/mihoubi-akram/) | [Github](https://github.com/mihoubi-akram) | <mihhakram@gmail.com>
**Ibrir Adel**: [Linkedin]() | [Github]() | <adelibrir2015@gmail.com>
|