MilaDeepGraph commited on
Commit
bfca2b4
1 Parent(s): 20924dc

clone from Jiqing's repo

Browse files
Files changed (5) hide show
  1. README.md +168 -1
  2. config.json +37 -0
  3. configuration_protst.py +42 -0
  4. model.safetensors +3 -0
  5. modeling_protst.py +213 -0
README.md CHANGED
@@ -1,3 +1,170 @@
1
  ---
2
- license: apache-2.0
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ library_name: transformers
3
+ tags: []
4
  ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ ProtST for binary localization
9
+
10
+ ## Running script
11
+ ```python
12
+ from transformers import AutoModel, AutoTokenizer, HfArgumentParser, TrainingArguments, Trainer
13
+ from transformers.data.data_collator import DataCollatorWithPadding
14
+ from transformers.trainer_pt_utils import get_parameter_names
15
+ from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
16
+ from datasets import load_dataset
17
+ import functools
18
+ import numpy as np
19
+ from sklearn.metrics import accuracy_score, matthews_corrcoef
20
+ import sys
21
+ import torch
22
+ import logging
23
+ import datasets
24
+ import transformers
25
+
26
+ logging.basicConfig(level=logging.INFO)
27
+ logger = logging.getLogger(__name__)
28
+
29
+ def create_optimizer(opt_model, lr_ratio=0.1):
30
+ head_names = []
31
+ for n, p in opt_model.named_parameters():
32
+ if "classifier" in n:
33
+ head_names.append(n)
34
+ else:
35
+ p.requires_grad = False
36
+ # turn a list of tuple to 2 lists
37
+ for n, p in opt_model.named_parameters():
38
+ if n in head_names:
39
+ assert p.requires_grad
40
+ backbone_names = []
41
+ for n, p in opt_model.named_parameters():
42
+ if n not in head_names and p.requires_grad:
43
+ backbone_names.append(n)
44
+ # for weight_decay policy, see
45
+ # https://github.com/huggingface/transformers/blob/50573c648ae953dcc1b94d663651f07fb02268f4/src/transformers/trainer.py#L947
46
+ decay_parameters = get_parameter_names(opt_model, ALL_LAYERNORM_LAYERS) # forbidden layer norm
47
+ decay_parameters = [name for name in decay_parameters if "bias" not in name]
48
+ # training_args.learning_rate
49
+ head_decay_parameters = [name for name in head_names if name in decay_parameters]
50
+ head_not_decay_parameters = [name for name in head_names if name not in decay_parameters]
51
+ # training_args.learning_rate * model_config.lr_ratio
52
+ backbone_decay_parameters = [name for name in backbone_names if name in decay_parameters]
53
+ backbone_not_decay_parameters = [name for name in backbone_names if name not in decay_parameters]
54
+ optimizer_grouped_parameters = [
55
+ {
56
+ "params": [p for n, p in opt_model.named_parameters() if (n in head_decay_parameters and p.requires_grad)],
57
+ "weight_decay": training_args.weight_decay,
58
+ "lr": training_args.learning_rate
59
+ },
60
+ {
61
+ "params": [p for n, p in opt_model.named_parameters() if (n in backbone_decay_parameters and p.requires_grad)],
62
+ "weight_decay": training_args.weight_decay,
63
+ "lr": training_args.learning_rate * lr_ratio
64
+ },
65
+ {
66
+ "params": [p for n, p in opt_model.named_parameters() if (n in head_not_decay_parameters and p.requires_grad)],
67
+ "weight_decay": 0.0,
68
+ "lr": training_args.learning_rate
69
+ },
70
+ {
71
+ "params": [p for n, p in opt_model.named_parameters() if (n in backbone_not_decay_parameters and p.requires_grad)],
72
+ "weight_decay": 0.0,
73
+ "lr": training_args.learning_rate * lr_ratio
74
+ },
75
+ ]
76
+ optimizer_cls, optimizer_kwargs = Trainer.get_optimizer_cls_and_kwargs(training_args)
77
+ optimizer = optimizer_cls(optimizer_grouped_parameters, **optimizer_kwargs)
78
+
79
+ return optimizer
80
+
81
+ def create_scheduler(training_args, optimizer):
82
+ from transformers.optimization import get_scheduler
83
+ return get_scheduler(
84
+ training_args.lr_scheduler_type,
85
+ optimizer=optimizer if optimizer is None else optimizer,
86
+ num_warmup_steps=training_args.get_warmup_steps(training_args.max_steps),
87
+ num_training_steps=training_args.max_steps,
88
+ )
89
+
90
+ def compute_metrics(eval_preds):
91
+ probs, labels = eval_preds
92
+ preds = np.argmax(probs, axis=-1)
93
+ result = {"accuracy": accuracy_score(labels, preds), "mcc": matthews_corrcoef(labels, preds)}
94
+ return result
95
+
96
+ def preprocess_logits_for_metrics(logits, labels):
97
+ return torch.softmax(logits, dim=-1)
98
+
99
+
100
+ if __name__ == "__main__":
101
+ device = torch.device("cpu")
102
+ raw_dataset = load_dataset("Jiqing/ProtST-BinaryLocalization")
103
+ model = AutoModel.from_pretrained("Jiqing/protst-esm1b-for-sequential-classification", trust_remote_code=True, torch_dtype=torch.bfloat16).to(device)
104
+ tokenizer = AutoTokenizer.from_pretrained("facebook/esm1b_t33_650M_UR50S")
105
+
106
+ output_dir = "/home/jiqingfe/protst/protst_2/ProtST-HuggingFace/output_dir/ProtSTModel/default/ESM-1b_PubMedBERT-abs/240123_015856"
107
+ training_args = {'output_dir': output_dir, 'overwrite_output_dir': True, 'do_train': True, 'per_device_train_batch_size': 32, 'gradient_accumulation_steps': 1, \
108
+ 'learning_rate': 5e-05, 'weight_decay': 0, 'num_train_epochs': 100, 'max_steps': -1, 'lr_scheduler_type': 'constant', 'do_eval': True, \
109
+ 'evaluation_strategy': 'epoch', 'per_device_eval_batch_size': 32, 'logging_strategy': 'epoch', 'save_strategy': 'epoch', 'save_steps': 820, \
110
+ 'dataloader_num_workers': 0, 'run_name': 'downstream_esm1b_localization_fix', 'optim': 'adamw_torch', 'resume_from_checkpoint': False, \
111
+ 'label_names': ['labels'], 'load_best_model_at_end': True, 'metric_for_best_model': 'accuracy', 'bf16': True, "save_total_limit": 3}
112
+ training_args = HfArgumentParser(TrainingArguments).parse_dict(training_args, allow_extra_keys=False)[0]
113
+
114
+ def tokenize_protein(example, tokenizer=None):
115
+ protein_seq = example["prot_seq"]
116
+ protein_seq_str = tokenizer(protein_seq, add_special_tokens=True)
117
+ example["input_ids"] = protein_seq_str["input_ids"]
118
+ example["attention_mask"] = protein_seq_str["attention_mask"]
119
+ example["labels"] = example["localization"]
120
+
121
+ return example
122
+
123
+ func_tokenize_protein = functools.partial(tokenize_protein, tokenizer=tokenizer)
124
+
125
+ for split in ["train", "validation", "test"]:
126
+ raw_dataset[split] = raw_dataset[split].map(func_tokenize_protein, batched=False, remove_columns=["Unnamed: 0", "prot_seq", "localization"])
127
+
128
+ data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
129
+
130
+ transformers.utils.logging.set_verbosity_info()
131
+ log_level = training_args.get_process_log_level()
132
+ logger.setLevel(log_level)
133
+
134
+ optimizer = create_optimizer(model)
135
+ scheduler = create_scheduler(training_args, optimizer)
136
+
137
+ # build trainer
138
+ trainer = Trainer(
139
+ model=model,
140
+ args=training_args,
141
+ train_dataset=raw_dataset["train"],
142
+ eval_dataset=raw_dataset["validation"],
143
+ data_collator=data_collator,
144
+ optimizers=(optimizer, scheduler),
145
+ compute_metrics=compute_metrics,
146
+ preprocess_logits_for_metrics=preprocess_logits_for_metrics,
147
+ )
148
+
149
+ train_result = trainer.train()
150
+
151
+ trainer.save_model()
152
+ # Saves the tokenizer too for easy upload
153
+ tokenizer.save_pretrained(training_args.output_dir)
154
+
155
+ metrics = train_result.metrics
156
+ metrics["train_samples"] = len(raw_dataset["train"])
157
+
158
+ trainer.log_metrics("train", metrics)
159
+ trainer.save_metrics("train", metrics)
160
+ trainer.save_state()
161
+
162
+ metric = trainer.evaluate(raw_dataset["test"], metric_key_prefix="test")
163
+ print("test metric: ", metric)
164
+
165
+ metric = trainer.evaluate(raw_dataset["validation"], metric_key_prefix="valid")
166
+ print("valid metric: ", metric)
167
+ ```
168
+
169
+
170
+
config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Jiqing/protst-esm1b-for-sequential-classification",
3
+ "architectures": [
4
+ "ProtSTForProteinPropertyPrediction"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "Jiqing/protst-esm1b-for-sequential-classification--configuration_protst.ProtSTConfig",
8
+ "AutoModel": "Jiqing/protst-esm1b-for-sequential-classification--modeling_protst.ProtSTForProteinPropertyPrediction"
9
+ },
10
+ "model_type": "protst",
11
+ "protein_config": {
12
+ "_name_or_path": "/tmp/facebook/esm1b_t33_650M_UR50S",
13
+ "architectures": [
14
+ "EsmForMaskedLM"
15
+ ],
16
+ "attention_probs_dropout_prob": 0.0,
17
+ "classifier_dropout": null,
18
+ "cls_token_id": 0,
19
+ "emb_layer_norm_before": true,
20
+ "eos_token_id": 2,
21
+ "hidden_act": "gelu",
22
+ "hidden_dropout_prob": 0.0,
23
+ "hidden_size": 1280,
24
+ "intermediate_size": 5120,
25
+ "layer_norm_eps": 1e-05,
26
+ "mask_token_id": 32,
27
+ "model_type": "esm",
28
+ "num_attention_heads": 20,
29
+ "num_hidden_layers": 33,
30
+ "pad_token_id": 1,
31
+ "token_dropout": true,
32
+ "torch_dtype": "float32",
33
+ "vocab_size": 33
34
+ },
35
+ "torch_dtype": "float32",
36
+ "transformers_version": "4.38.0.dev0"
37
+ }
configuration_protst.py ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig
2
+ from transformers.utils import logging
3
+ from transformers.models.esm import EsmConfig
4
+
5
+ logger = logging.get_logger(__name__)
6
+
7
+
8
+ class ProtSTConfig(PretrainedConfig):
9
+ r"""
10
+ This is the configuration class to store the configuration of a [`ProtSTModel`].
11
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
12
+ documentation from [`PretrainedConfig`] for more information.
13
+ Args:
14
+ protein_config (`dict`, *optional*):
15
+ Dictionary of configuration options used to initialize [`EsmForProteinRepresentation`].
16
+ ```"""
17
+
18
+ model_type = "protst"
19
+
20
+ def __init__(
21
+ self,
22
+ protein_config=None,
23
+ **kwargs,
24
+ ):
25
+ super().__init__(**kwargs)
26
+
27
+ if protein_config is None:
28
+ protein_config = {}
29
+ logger.info("`protein_config` is `None`. Initializing the `ProtSTProteinConfig` with default values.")
30
+
31
+ self.protein_config = EsmConfig(**protein_config)
32
+
33
+ @classmethod
34
+ def from_protein_text_configs(
35
+ cls, protein_config: EsmConfig, **kwargs
36
+ ):
37
+ r"""
38
+ Instantiate a [`ProtSTConfig`] (or a derived class) from ProtST text model configuration. Returns:
39
+ [`ProtSTConfig`]: An instance of a configuration object
40
+ """
41
+
42
+ return cls(protein_config=protein_config.to_dict(), **kwargs)
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2cc85989acd0d89c5dd68001eac09168fdb4e36b9ae6056ff278f6728dba045c
3
+ size 135
modeling_protst.py ADDED
@@ -0,0 +1,213 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import torch
3
+ import torch.nn as nn
4
+ from typing import Optional, Tuple, Union
5
+ from dataclasses import dataclass
6
+ from transformers import PreTrainedModel
7
+ from transformers.modeling_outputs import ModelOutput
8
+ from transformers.models.esm import EsmPreTrainedModel, EsmModel
9
+ from transformers.models.bert import BertPreTrainedModel, BertModel
10
+ from .configuration_protst import ProtSTConfig
11
+
12
+
13
+ @dataclass
14
+ class EsmProteinRepresentationOutput(ModelOutput):
15
+
16
+ protein_feature: torch.FloatTensor = None
17
+ residue_feature: torch.FloatTensor = None
18
+
19
+
20
+ @dataclass
21
+ class BertTextRepresentationOutput(ModelOutput):
22
+
23
+ text_feature: torch.FloatTensor = None
24
+ word_feature: torch.FloatTensor = None
25
+
26
+
27
+ @dataclass
28
+ class ProtSTClassificationOutput(ModelOutput):
29
+
30
+ loss: Optional[torch.FloatTensor] = None
31
+ logits: torch.FloatTensor = None
32
+
33
+ class ProtSTHead(nn.Module):
34
+ def __init__(self, config, out_dim=512):
35
+ super().__init__()
36
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
37
+ self.out_proj = nn.Linear(config.hidden_size, out_dim)
38
+
39
+ def forward(self, x):
40
+ x = self.dense(x)
41
+ x = nn.functional.relu(x)
42
+ x = self.out_proj(x)
43
+ return x
44
+
45
+
46
+ class BertForPubMed(BertPreTrainedModel):
47
+ def __init__(self, config):
48
+ super().__init__(config)
49
+
50
+ self.pad_token_id = config.pad_token_id
51
+ self.cls_token_id = config.cls_token_id
52
+ self.sep_token_id = config.sep_token_id
53
+
54
+ self.bert = BertModel(config, add_pooling_layer=False)
55
+ self.text_mlp = ProtSTHead(config)
56
+ self.word_mlp = ProtSTHead(config)
57
+
58
+ self.post_init() # NOTE
59
+
60
+ def forward(
61
+ self,
62
+ input_ids: Optional[torch.Tensor] = None,
63
+ attention_mask: Optional[torch.Tensor] = None,
64
+ token_type_ids: Optional[torch.Tensor] = None,
65
+ position_ids: Optional[torch.Tensor] = None,
66
+ head_mask: Optional[torch.Tensor] = None,
67
+ inputs_embeds: Optional[torch.Tensor] = None,
68
+ encoder_hidden_states: Optional[torch.Tensor] = None,
69
+ encoder_attention_mask: Optional[torch.Tensor] = None,
70
+ output_attentions: Optional[bool] = None,
71
+ output_hidden_states: Optional[bool] = None,
72
+ return_dict: Optional[bool] = None,
73
+ ) -> Union[Tuple[torch.Tensor], ModelOutput]:
74
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
75
+
76
+ outputs = self.bert(
77
+ input_ids,
78
+ attention_mask=attention_mask,
79
+ token_type_ids=token_type_ids,
80
+ position_ids=position_ids,
81
+ head_mask=head_mask,
82
+ inputs_embeds=inputs_embeds,
83
+ encoder_hidden_states=encoder_hidden_states,
84
+ encoder_attention_mask=encoder_attention_mask,
85
+ output_attentions=output_attentions,
86
+ output_hidden_states=output_hidden_states,
87
+ return_dict=return_dict,
88
+ )
89
+ word_feature = outputs.last_hidden_state
90
+ is_special = (input_ids == self.cls_token_id) | (input_ids == self.sep_token_id) | (input_ids == self.pad_token_id)
91
+ special_mask = (~is_special).to(torch.int64).unsqueeze(-1)
92
+ pooled_feature = ((word_feature * special_mask).sum(1) / (special_mask.sum(1) + 1.0e-6)).to(word_feature.dtype)
93
+ pooled_feature = self.text_mlp(pooled_feature)
94
+ word_feature = self.word_mlp(word_feature)
95
+
96
+ if not return_dict:
97
+ return (pooled_feature, word_feature)
98
+
99
+ return BertTextRepresentationOutput(text_feature=pooled_feature, word_feature=word_feature)
100
+
101
+
102
+
103
+
104
+ class EsmForProteinRepresentation(EsmPreTrainedModel):
105
+ def __init__(self, config):
106
+ super().__init__(config)
107
+
108
+ self.cls_token_id = config.cls_token_id
109
+ self.pad_token_id = config.pad_token_id
110
+ self.eos_token_id = config.eos_token_id
111
+
112
+ self.esm = EsmModel(config, add_pooling_layer=False)
113
+
114
+ self.post_init() # NOTE
115
+
116
+ def forward(
117
+ self,
118
+ input_ids: Optional[torch.LongTensor] = None,
119
+ attention_mask: Optional[torch.Tensor] = None,
120
+ position_ids: Optional[torch.LongTensor] = None,
121
+ head_mask: Optional[torch.Tensor] = None,
122
+ inputs_embeds: Optional[torch.FloatTensor] = None,
123
+ output_attentions: Optional[bool] = None,
124
+ output_hidden_states: Optional[bool] = None,
125
+ return_dict: Optional[bool] = None,
126
+ ) -> Union[Tuple, EsmProteinRepresentationOutput]:
127
+
128
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
129
+
130
+ outputs = self.esm(
131
+ input_ids,
132
+ attention_mask=attention_mask,
133
+ position_ids=position_ids,
134
+ head_mask=head_mask,
135
+ inputs_embeds=inputs_embeds,
136
+ output_attentions=output_attentions,
137
+ output_hidden_states=output_hidden_states,
138
+ return_dict=return_dict,
139
+ )
140
+
141
+ residue_feature = outputs.last_hidden_state # [batch_size, seq_len, hidden_dim]
142
+
143
+ # mean readout
144
+ is_special = (
145
+ (input_ids == self.cls_token_id) | (input_ids == self.eos_token_id) | (input_ids == self.pad_token_id)
146
+ )
147
+ special_mask = (~is_special).to(torch.int64).unsqueeze(-1)
148
+ protein_feature = ((residue_feature * special_mask).sum(1) / (special_mask.sum(1) + 1.0e-6)).to(residue_feature.dtype)
149
+
150
+ return EsmProteinRepresentationOutput(
151
+ protein_feature=protein_feature, residue_feature=residue_feature
152
+ )
153
+
154
+
155
+ class ProtSTPreTrainedModel(PreTrainedModel):
156
+ config_class = ProtSTConfig
157
+
158
+
159
+ class ProtSTForProteinPropertyPrediction(ProtSTPreTrainedModel):
160
+ def __init__(self, config):
161
+ super().__init__(config)
162
+
163
+ self.config = config
164
+ self.protein_model = EsmForProteinRepresentation(config.protein_config)
165
+ self.classifier = ProtSTHead(config.protein_config, out_dim=config.num_labels)
166
+
167
+ self.post_init() # NOTE
168
+
169
+ def forward(
170
+ self,
171
+ input_ids: Optional[torch.LongTensor] = None,
172
+ attention_mask: Optional[torch.Tensor] = None,
173
+ position_ids: Optional[torch.LongTensor] = None,
174
+ head_mask: Optional[torch.Tensor] = None,
175
+ inputs_embeds: Optional[torch.FloatTensor] = None,
176
+ labels: Optional[torch.LongTensor] = None,
177
+ output_attentions: Optional[bool] = None,
178
+ output_hidden_states: Optional[bool] = None,
179
+ return_dict: Optional[bool] = None,
180
+ ) -> Union[Tuple, ProtSTClassificationOutput]:
181
+ r"""
182
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
183
+ Labels for computing the protein classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
184
+ Returns:
185
+ Examples:
186
+ """
187
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
188
+
189
+ outputs = self.protein_model(
190
+ input_ids,
191
+ attention_mask=attention_mask,
192
+ position_ids=position_ids,
193
+ head_mask=head_mask,
194
+ inputs_embeds=inputs_embeds,
195
+ output_attentions=output_attentions,
196
+ output_hidden_states=output_hidden_states,
197
+ return_dict=return_dict,
198
+ )
199
+
200
+ logits = self.classifier(outputs.protein_feature) # [bsz, xxx] -> [bsz, num_labels]
201
+
202
+ loss = None
203
+ if labels is not None:
204
+ loss_fct = nn.CrossEntropyLoss()
205
+
206
+ labels = labels.to(logits.device)
207
+ loss = loss_fct(logits.view(-1, logits.shape[-1]), labels.view(-1))
208
+
209
+ if not return_dict:
210
+ output = (logits,)
211
+ return ((loss,) + output) if loss is not None else output
212
+
213
+ return ProtSTClassificationOutput(loss=loss, logits=logits)