MilaDeepGraph
commited on
Commit
•
bfca2b4
1
Parent(s):
20924dc
clone from Jiqing's repo
Browse files- README.md +168 -1
- config.json +37 -0
- configuration_protst.py +42 -0
- model.safetensors +3 -0
- modeling_protst.py +213 -0
README.md
CHANGED
@@ -1,3 +1,170 @@
|
|
1 |
---
|
2 |
-
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
library_name: transformers
|
3 |
+
tags: []
|
4 |
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
ProtST for binary localization
|
9 |
+
|
10 |
+
## Running script
|
11 |
+
```python
|
12 |
+
from transformers import AutoModel, AutoTokenizer, HfArgumentParser, TrainingArguments, Trainer
|
13 |
+
from transformers.data.data_collator import DataCollatorWithPadding
|
14 |
+
from transformers.trainer_pt_utils import get_parameter_names
|
15 |
+
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
|
16 |
+
from datasets import load_dataset
|
17 |
+
import functools
|
18 |
+
import numpy as np
|
19 |
+
from sklearn.metrics import accuracy_score, matthews_corrcoef
|
20 |
+
import sys
|
21 |
+
import torch
|
22 |
+
import logging
|
23 |
+
import datasets
|
24 |
+
import transformers
|
25 |
+
|
26 |
+
logging.basicConfig(level=logging.INFO)
|
27 |
+
logger = logging.getLogger(__name__)
|
28 |
+
|
29 |
+
def create_optimizer(opt_model, lr_ratio=0.1):
|
30 |
+
head_names = []
|
31 |
+
for n, p in opt_model.named_parameters():
|
32 |
+
if "classifier" in n:
|
33 |
+
head_names.append(n)
|
34 |
+
else:
|
35 |
+
p.requires_grad = False
|
36 |
+
# turn a list of tuple to 2 lists
|
37 |
+
for n, p in opt_model.named_parameters():
|
38 |
+
if n in head_names:
|
39 |
+
assert p.requires_grad
|
40 |
+
backbone_names = []
|
41 |
+
for n, p in opt_model.named_parameters():
|
42 |
+
if n not in head_names and p.requires_grad:
|
43 |
+
backbone_names.append(n)
|
44 |
+
# for weight_decay policy, see
|
45 |
+
# https://github.com/huggingface/transformers/blob/50573c648ae953dcc1b94d663651f07fb02268f4/src/transformers/trainer.py#L947
|
46 |
+
decay_parameters = get_parameter_names(opt_model, ALL_LAYERNORM_LAYERS) # forbidden layer norm
|
47 |
+
decay_parameters = [name for name in decay_parameters if "bias" not in name]
|
48 |
+
# training_args.learning_rate
|
49 |
+
head_decay_parameters = [name for name in head_names if name in decay_parameters]
|
50 |
+
head_not_decay_parameters = [name for name in head_names if name not in decay_parameters]
|
51 |
+
# training_args.learning_rate * model_config.lr_ratio
|
52 |
+
backbone_decay_parameters = [name for name in backbone_names if name in decay_parameters]
|
53 |
+
backbone_not_decay_parameters = [name for name in backbone_names if name not in decay_parameters]
|
54 |
+
optimizer_grouped_parameters = [
|
55 |
+
{
|
56 |
+
"params": [p for n, p in opt_model.named_parameters() if (n in head_decay_parameters and p.requires_grad)],
|
57 |
+
"weight_decay": training_args.weight_decay,
|
58 |
+
"lr": training_args.learning_rate
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"params": [p for n, p in opt_model.named_parameters() if (n in backbone_decay_parameters and p.requires_grad)],
|
62 |
+
"weight_decay": training_args.weight_decay,
|
63 |
+
"lr": training_args.learning_rate * lr_ratio
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"params": [p for n, p in opt_model.named_parameters() if (n in head_not_decay_parameters and p.requires_grad)],
|
67 |
+
"weight_decay": 0.0,
|
68 |
+
"lr": training_args.learning_rate
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"params": [p for n, p in opt_model.named_parameters() if (n in backbone_not_decay_parameters and p.requires_grad)],
|
72 |
+
"weight_decay": 0.0,
|
73 |
+
"lr": training_args.learning_rate * lr_ratio
|
74 |
+
},
|
75 |
+
]
|
76 |
+
optimizer_cls, optimizer_kwargs = Trainer.get_optimizer_cls_and_kwargs(training_args)
|
77 |
+
optimizer = optimizer_cls(optimizer_grouped_parameters, **optimizer_kwargs)
|
78 |
+
|
79 |
+
return optimizer
|
80 |
+
|
81 |
+
def create_scheduler(training_args, optimizer):
|
82 |
+
from transformers.optimization import get_scheduler
|
83 |
+
return get_scheduler(
|
84 |
+
training_args.lr_scheduler_type,
|
85 |
+
optimizer=optimizer if optimizer is None else optimizer,
|
86 |
+
num_warmup_steps=training_args.get_warmup_steps(training_args.max_steps),
|
87 |
+
num_training_steps=training_args.max_steps,
|
88 |
+
)
|
89 |
+
|
90 |
+
def compute_metrics(eval_preds):
|
91 |
+
probs, labels = eval_preds
|
92 |
+
preds = np.argmax(probs, axis=-1)
|
93 |
+
result = {"accuracy": accuracy_score(labels, preds), "mcc": matthews_corrcoef(labels, preds)}
|
94 |
+
return result
|
95 |
+
|
96 |
+
def preprocess_logits_for_metrics(logits, labels):
|
97 |
+
return torch.softmax(logits, dim=-1)
|
98 |
+
|
99 |
+
|
100 |
+
if __name__ == "__main__":
|
101 |
+
device = torch.device("cpu")
|
102 |
+
raw_dataset = load_dataset("Jiqing/ProtST-BinaryLocalization")
|
103 |
+
model = AutoModel.from_pretrained("Jiqing/protst-esm1b-for-sequential-classification", trust_remote_code=True, torch_dtype=torch.bfloat16).to(device)
|
104 |
+
tokenizer = AutoTokenizer.from_pretrained("facebook/esm1b_t33_650M_UR50S")
|
105 |
+
|
106 |
+
output_dir = "/home/jiqingfe/protst/protst_2/ProtST-HuggingFace/output_dir/ProtSTModel/default/ESM-1b_PubMedBERT-abs/240123_015856"
|
107 |
+
training_args = {'output_dir': output_dir, 'overwrite_output_dir': True, 'do_train': True, 'per_device_train_batch_size': 32, 'gradient_accumulation_steps': 1, \
|
108 |
+
'learning_rate': 5e-05, 'weight_decay': 0, 'num_train_epochs': 100, 'max_steps': -1, 'lr_scheduler_type': 'constant', 'do_eval': True, \
|
109 |
+
'evaluation_strategy': 'epoch', 'per_device_eval_batch_size': 32, 'logging_strategy': 'epoch', 'save_strategy': 'epoch', 'save_steps': 820, \
|
110 |
+
'dataloader_num_workers': 0, 'run_name': 'downstream_esm1b_localization_fix', 'optim': 'adamw_torch', 'resume_from_checkpoint': False, \
|
111 |
+
'label_names': ['labels'], 'load_best_model_at_end': True, 'metric_for_best_model': 'accuracy', 'bf16': True, "save_total_limit": 3}
|
112 |
+
training_args = HfArgumentParser(TrainingArguments).parse_dict(training_args, allow_extra_keys=False)[0]
|
113 |
+
|
114 |
+
def tokenize_protein(example, tokenizer=None):
|
115 |
+
protein_seq = example["prot_seq"]
|
116 |
+
protein_seq_str = tokenizer(protein_seq, add_special_tokens=True)
|
117 |
+
example["input_ids"] = protein_seq_str["input_ids"]
|
118 |
+
example["attention_mask"] = protein_seq_str["attention_mask"]
|
119 |
+
example["labels"] = example["localization"]
|
120 |
+
|
121 |
+
return example
|
122 |
+
|
123 |
+
func_tokenize_protein = functools.partial(tokenize_protein, tokenizer=tokenizer)
|
124 |
+
|
125 |
+
for split in ["train", "validation", "test"]:
|
126 |
+
raw_dataset[split] = raw_dataset[split].map(func_tokenize_protein, batched=False, remove_columns=["Unnamed: 0", "prot_seq", "localization"])
|
127 |
+
|
128 |
+
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
129 |
+
|
130 |
+
transformers.utils.logging.set_verbosity_info()
|
131 |
+
log_level = training_args.get_process_log_level()
|
132 |
+
logger.setLevel(log_level)
|
133 |
+
|
134 |
+
optimizer = create_optimizer(model)
|
135 |
+
scheduler = create_scheduler(training_args, optimizer)
|
136 |
+
|
137 |
+
# build trainer
|
138 |
+
trainer = Trainer(
|
139 |
+
model=model,
|
140 |
+
args=training_args,
|
141 |
+
train_dataset=raw_dataset["train"],
|
142 |
+
eval_dataset=raw_dataset["validation"],
|
143 |
+
data_collator=data_collator,
|
144 |
+
optimizers=(optimizer, scheduler),
|
145 |
+
compute_metrics=compute_metrics,
|
146 |
+
preprocess_logits_for_metrics=preprocess_logits_for_metrics,
|
147 |
+
)
|
148 |
+
|
149 |
+
train_result = trainer.train()
|
150 |
+
|
151 |
+
trainer.save_model()
|
152 |
+
# Saves the tokenizer too for easy upload
|
153 |
+
tokenizer.save_pretrained(training_args.output_dir)
|
154 |
+
|
155 |
+
metrics = train_result.metrics
|
156 |
+
metrics["train_samples"] = len(raw_dataset["train"])
|
157 |
+
|
158 |
+
trainer.log_metrics("train", metrics)
|
159 |
+
trainer.save_metrics("train", metrics)
|
160 |
+
trainer.save_state()
|
161 |
+
|
162 |
+
metric = trainer.evaluate(raw_dataset["test"], metric_key_prefix="test")
|
163 |
+
print("test metric: ", metric)
|
164 |
+
|
165 |
+
metric = trainer.evaluate(raw_dataset["validation"], metric_key_prefix="valid")
|
166 |
+
print("valid metric: ", metric)
|
167 |
+
```
|
168 |
+
|
169 |
+
|
170 |
+
|
config.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Jiqing/protst-esm1b-for-sequential-classification",
|
3 |
+
"architectures": [
|
4 |
+
"ProtSTForProteinPropertyPrediction"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "Jiqing/protst-esm1b-for-sequential-classification--configuration_protst.ProtSTConfig",
|
8 |
+
"AutoModel": "Jiqing/protst-esm1b-for-sequential-classification--modeling_protst.ProtSTForProteinPropertyPrediction"
|
9 |
+
},
|
10 |
+
"model_type": "protst",
|
11 |
+
"protein_config": {
|
12 |
+
"_name_or_path": "/tmp/facebook/esm1b_t33_650M_UR50S",
|
13 |
+
"architectures": [
|
14 |
+
"EsmForMaskedLM"
|
15 |
+
],
|
16 |
+
"attention_probs_dropout_prob": 0.0,
|
17 |
+
"classifier_dropout": null,
|
18 |
+
"cls_token_id": 0,
|
19 |
+
"emb_layer_norm_before": true,
|
20 |
+
"eos_token_id": 2,
|
21 |
+
"hidden_act": "gelu",
|
22 |
+
"hidden_dropout_prob": 0.0,
|
23 |
+
"hidden_size": 1280,
|
24 |
+
"intermediate_size": 5120,
|
25 |
+
"layer_norm_eps": 1e-05,
|
26 |
+
"mask_token_id": 32,
|
27 |
+
"model_type": "esm",
|
28 |
+
"num_attention_heads": 20,
|
29 |
+
"num_hidden_layers": 33,
|
30 |
+
"pad_token_id": 1,
|
31 |
+
"token_dropout": true,
|
32 |
+
"torch_dtype": "float32",
|
33 |
+
"vocab_size": 33
|
34 |
+
},
|
35 |
+
"torch_dtype": "float32",
|
36 |
+
"transformers_version": "4.38.0.dev0"
|
37 |
+
}
|
configuration_protst.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
from transformers.utils import logging
|
3 |
+
from transformers.models.esm import EsmConfig
|
4 |
+
|
5 |
+
logger = logging.get_logger(__name__)
|
6 |
+
|
7 |
+
|
8 |
+
class ProtSTConfig(PretrainedConfig):
|
9 |
+
r"""
|
10 |
+
This is the configuration class to store the configuration of a [`ProtSTModel`].
|
11 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
12 |
+
documentation from [`PretrainedConfig`] for more information.
|
13 |
+
Args:
|
14 |
+
protein_config (`dict`, *optional*):
|
15 |
+
Dictionary of configuration options used to initialize [`EsmForProteinRepresentation`].
|
16 |
+
```"""
|
17 |
+
|
18 |
+
model_type = "protst"
|
19 |
+
|
20 |
+
def __init__(
|
21 |
+
self,
|
22 |
+
protein_config=None,
|
23 |
+
**kwargs,
|
24 |
+
):
|
25 |
+
super().__init__(**kwargs)
|
26 |
+
|
27 |
+
if protein_config is None:
|
28 |
+
protein_config = {}
|
29 |
+
logger.info("`protein_config` is `None`. Initializing the `ProtSTProteinConfig` with default values.")
|
30 |
+
|
31 |
+
self.protein_config = EsmConfig(**protein_config)
|
32 |
+
|
33 |
+
@classmethod
|
34 |
+
def from_protein_text_configs(
|
35 |
+
cls, protein_config: EsmConfig, **kwargs
|
36 |
+
):
|
37 |
+
r"""
|
38 |
+
Instantiate a [`ProtSTConfig`] (or a derived class) from ProtST text model configuration. Returns:
|
39 |
+
[`ProtSTConfig`]: An instance of a configuration object
|
40 |
+
"""
|
41 |
+
|
42 |
+
return cls(protein_config=protein_config.to_dict(), **kwargs)
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2cc85989acd0d89c5dd68001eac09168fdb4e36b9ae6056ff278f6728dba045c
|
3 |
+
size 135
|
modeling_protst.py
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from typing import Optional, Tuple, Union
|
5 |
+
from dataclasses import dataclass
|
6 |
+
from transformers import PreTrainedModel
|
7 |
+
from transformers.modeling_outputs import ModelOutput
|
8 |
+
from transformers.models.esm import EsmPreTrainedModel, EsmModel
|
9 |
+
from transformers.models.bert import BertPreTrainedModel, BertModel
|
10 |
+
from .configuration_protst import ProtSTConfig
|
11 |
+
|
12 |
+
|
13 |
+
@dataclass
|
14 |
+
class EsmProteinRepresentationOutput(ModelOutput):
|
15 |
+
|
16 |
+
protein_feature: torch.FloatTensor = None
|
17 |
+
residue_feature: torch.FloatTensor = None
|
18 |
+
|
19 |
+
|
20 |
+
@dataclass
|
21 |
+
class BertTextRepresentationOutput(ModelOutput):
|
22 |
+
|
23 |
+
text_feature: torch.FloatTensor = None
|
24 |
+
word_feature: torch.FloatTensor = None
|
25 |
+
|
26 |
+
|
27 |
+
@dataclass
|
28 |
+
class ProtSTClassificationOutput(ModelOutput):
|
29 |
+
|
30 |
+
loss: Optional[torch.FloatTensor] = None
|
31 |
+
logits: torch.FloatTensor = None
|
32 |
+
|
33 |
+
class ProtSTHead(nn.Module):
|
34 |
+
def __init__(self, config, out_dim=512):
|
35 |
+
super().__init__()
|
36 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
37 |
+
self.out_proj = nn.Linear(config.hidden_size, out_dim)
|
38 |
+
|
39 |
+
def forward(self, x):
|
40 |
+
x = self.dense(x)
|
41 |
+
x = nn.functional.relu(x)
|
42 |
+
x = self.out_proj(x)
|
43 |
+
return x
|
44 |
+
|
45 |
+
|
46 |
+
class BertForPubMed(BertPreTrainedModel):
|
47 |
+
def __init__(self, config):
|
48 |
+
super().__init__(config)
|
49 |
+
|
50 |
+
self.pad_token_id = config.pad_token_id
|
51 |
+
self.cls_token_id = config.cls_token_id
|
52 |
+
self.sep_token_id = config.sep_token_id
|
53 |
+
|
54 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
55 |
+
self.text_mlp = ProtSTHead(config)
|
56 |
+
self.word_mlp = ProtSTHead(config)
|
57 |
+
|
58 |
+
self.post_init() # NOTE
|
59 |
+
|
60 |
+
def forward(
|
61 |
+
self,
|
62 |
+
input_ids: Optional[torch.Tensor] = None,
|
63 |
+
attention_mask: Optional[torch.Tensor] = None,
|
64 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
65 |
+
position_ids: Optional[torch.Tensor] = None,
|
66 |
+
head_mask: Optional[torch.Tensor] = None,
|
67 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
68 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
69 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
70 |
+
output_attentions: Optional[bool] = None,
|
71 |
+
output_hidden_states: Optional[bool] = None,
|
72 |
+
return_dict: Optional[bool] = None,
|
73 |
+
) -> Union[Tuple[torch.Tensor], ModelOutput]:
|
74 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
75 |
+
|
76 |
+
outputs = self.bert(
|
77 |
+
input_ids,
|
78 |
+
attention_mask=attention_mask,
|
79 |
+
token_type_ids=token_type_ids,
|
80 |
+
position_ids=position_ids,
|
81 |
+
head_mask=head_mask,
|
82 |
+
inputs_embeds=inputs_embeds,
|
83 |
+
encoder_hidden_states=encoder_hidden_states,
|
84 |
+
encoder_attention_mask=encoder_attention_mask,
|
85 |
+
output_attentions=output_attentions,
|
86 |
+
output_hidden_states=output_hidden_states,
|
87 |
+
return_dict=return_dict,
|
88 |
+
)
|
89 |
+
word_feature = outputs.last_hidden_state
|
90 |
+
is_special = (input_ids == self.cls_token_id) | (input_ids == self.sep_token_id) | (input_ids == self.pad_token_id)
|
91 |
+
special_mask = (~is_special).to(torch.int64).unsqueeze(-1)
|
92 |
+
pooled_feature = ((word_feature * special_mask).sum(1) / (special_mask.sum(1) + 1.0e-6)).to(word_feature.dtype)
|
93 |
+
pooled_feature = self.text_mlp(pooled_feature)
|
94 |
+
word_feature = self.word_mlp(word_feature)
|
95 |
+
|
96 |
+
if not return_dict:
|
97 |
+
return (pooled_feature, word_feature)
|
98 |
+
|
99 |
+
return BertTextRepresentationOutput(text_feature=pooled_feature, word_feature=word_feature)
|
100 |
+
|
101 |
+
|
102 |
+
|
103 |
+
|
104 |
+
class EsmForProteinRepresentation(EsmPreTrainedModel):
|
105 |
+
def __init__(self, config):
|
106 |
+
super().__init__(config)
|
107 |
+
|
108 |
+
self.cls_token_id = config.cls_token_id
|
109 |
+
self.pad_token_id = config.pad_token_id
|
110 |
+
self.eos_token_id = config.eos_token_id
|
111 |
+
|
112 |
+
self.esm = EsmModel(config, add_pooling_layer=False)
|
113 |
+
|
114 |
+
self.post_init() # NOTE
|
115 |
+
|
116 |
+
def forward(
|
117 |
+
self,
|
118 |
+
input_ids: Optional[torch.LongTensor] = None,
|
119 |
+
attention_mask: Optional[torch.Tensor] = None,
|
120 |
+
position_ids: Optional[torch.LongTensor] = None,
|
121 |
+
head_mask: Optional[torch.Tensor] = None,
|
122 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
123 |
+
output_attentions: Optional[bool] = None,
|
124 |
+
output_hidden_states: Optional[bool] = None,
|
125 |
+
return_dict: Optional[bool] = None,
|
126 |
+
) -> Union[Tuple, EsmProteinRepresentationOutput]:
|
127 |
+
|
128 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
129 |
+
|
130 |
+
outputs = self.esm(
|
131 |
+
input_ids,
|
132 |
+
attention_mask=attention_mask,
|
133 |
+
position_ids=position_ids,
|
134 |
+
head_mask=head_mask,
|
135 |
+
inputs_embeds=inputs_embeds,
|
136 |
+
output_attentions=output_attentions,
|
137 |
+
output_hidden_states=output_hidden_states,
|
138 |
+
return_dict=return_dict,
|
139 |
+
)
|
140 |
+
|
141 |
+
residue_feature = outputs.last_hidden_state # [batch_size, seq_len, hidden_dim]
|
142 |
+
|
143 |
+
# mean readout
|
144 |
+
is_special = (
|
145 |
+
(input_ids == self.cls_token_id) | (input_ids == self.eos_token_id) | (input_ids == self.pad_token_id)
|
146 |
+
)
|
147 |
+
special_mask = (~is_special).to(torch.int64).unsqueeze(-1)
|
148 |
+
protein_feature = ((residue_feature * special_mask).sum(1) / (special_mask.sum(1) + 1.0e-6)).to(residue_feature.dtype)
|
149 |
+
|
150 |
+
return EsmProteinRepresentationOutput(
|
151 |
+
protein_feature=protein_feature, residue_feature=residue_feature
|
152 |
+
)
|
153 |
+
|
154 |
+
|
155 |
+
class ProtSTPreTrainedModel(PreTrainedModel):
|
156 |
+
config_class = ProtSTConfig
|
157 |
+
|
158 |
+
|
159 |
+
class ProtSTForProteinPropertyPrediction(ProtSTPreTrainedModel):
|
160 |
+
def __init__(self, config):
|
161 |
+
super().__init__(config)
|
162 |
+
|
163 |
+
self.config = config
|
164 |
+
self.protein_model = EsmForProteinRepresentation(config.protein_config)
|
165 |
+
self.classifier = ProtSTHead(config.protein_config, out_dim=config.num_labels)
|
166 |
+
|
167 |
+
self.post_init() # NOTE
|
168 |
+
|
169 |
+
def forward(
|
170 |
+
self,
|
171 |
+
input_ids: Optional[torch.LongTensor] = None,
|
172 |
+
attention_mask: Optional[torch.Tensor] = None,
|
173 |
+
position_ids: Optional[torch.LongTensor] = None,
|
174 |
+
head_mask: Optional[torch.Tensor] = None,
|
175 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
176 |
+
labels: Optional[torch.LongTensor] = None,
|
177 |
+
output_attentions: Optional[bool] = None,
|
178 |
+
output_hidden_states: Optional[bool] = None,
|
179 |
+
return_dict: Optional[bool] = None,
|
180 |
+
) -> Union[Tuple, ProtSTClassificationOutput]:
|
181 |
+
r"""
|
182 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
183 |
+
Labels for computing the protein classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
184 |
+
Returns:
|
185 |
+
Examples:
|
186 |
+
"""
|
187 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
188 |
+
|
189 |
+
outputs = self.protein_model(
|
190 |
+
input_ids,
|
191 |
+
attention_mask=attention_mask,
|
192 |
+
position_ids=position_ids,
|
193 |
+
head_mask=head_mask,
|
194 |
+
inputs_embeds=inputs_embeds,
|
195 |
+
output_attentions=output_attentions,
|
196 |
+
output_hidden_states=output_hidden_states,
|
197 |
+
return_dict=return_dict,
|
198 |
+
)
|
199 |
+
|
200 |
+
logits = self.classifier(outputs.protein_feature) # [bsz, xxx] -> [bsz, num_labels]
|
201 |
+
|
202 |
+
loss = None
|
203 |
+
if labels is not None:
|
204 |
+
loss_fct = nn.CrossEntropyLoss()
|
205 |
+
|
206 |
+
labels = labels.to(logits.device)
|
207 |
+
loss = loss_fct(logits.view(-1, logits.shape[-1]), labels.view(-1))
|
208 |
+
|
209 |
+
if not return_dict:
|
210 |
+
output = (logits,)
|
211 |
+
return ((loss,) + output) if loss is not None else output
|
212 |
+
|
213 |
+
return ProtSTClassificationOutput(loss=loss, logits=logits)
|