{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f30b21a96c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689122043208280358, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2sqbtvKCg9zqNpPo7IXL60ro09ZksuvQAAAAAAAAAADaGFPsz6/T4dJ/W9LKyAviAyJT32oLA8AAAAAAAAAADNzyo+dsZNvHZH2TzANSm7RAqwvU5pCrwAAIA/AACAP81X37w6VzE/Y8mVPWyTv76kGCc9otXLPQAAAAAAAAAAet4LPoVZtbvJhyI8S+R2ujInGb2KGFG7AACAPwAAgD/Nmvo8j5Z5ugKrbbuBmci4o8XvuQ39MzgAAIA/AACAP/Xjhr7ISyM/Bg7VPRFkzL64x0++t2KiPAAAAAAAAAAATd8WPc82NrxcxSO8qxYXPZWulb1ag/E9AACAPwAAgD+NHY49vqhMP/Z4QTzjm6K+Cj5suRuupL0AAAAAAAAAAGZPsz1IK6G6FbbOuEXBqjXNte05TsHhNwAAAAAAAIA/c3YbPvaNKT0W64O+ICUzvpcTjbxKy5q9AAAAAAAAAABAPD8+Gz3GvCcBtT18plW8HWksvgEtJr0AAIA/AACAPwBw0rwVPGk/A5WTvKxk0754MoK908XYvAAAAAAAAAAAjYHAPSk8KbruDig1FWIOMPnMHjs2n2a0AACAPwAAgD/mVRM+wcPxPr5JHb6T9qi+r+MHvPqSCb4AAAAAAAAAAKZIxD1Ij6O6guy7OqsHajX5KoS6LSXXuQAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVPAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG88ysKb8WOMAWyUTSUBjAF0lEdAnzgJswco6XV9lChoBkdAcr6C0WuX/2gHS/BoCEdAnzkokeIVM3V9lChoBkdAbEXZha1Ti2gHS/JoCEdAnzmlJL/S6XV9lChoBkdAcFNi8Fpwj2gHTRkBaAhHQJ86VG8VYZF1fZQoaAZHQHItNygf2bpoB01YAWgIR0CfOv0Y0l7ddX2UKGgGR0BwZmIrOJLvaAdNJQFoCEdAnzvvk7wKB3V9lChoBkdAc4wijL0SRWgHTRYBaAhHQJ9OHYChew91fZQoaAZHQHAsLgflp49oB00OAWgIR0CfUTowVTJhdX2UKGgGR0ButuoaUA1faAdNGgFoCEdAn1F6iGnGbXV9lChoBkdAcXAi5uqFRGgHTUoBaAhHQJ9SMvwmVqx1fZQoaAZHQGvMWY4Qz1toB00KAWgIR0CfUw1WbPQfdX2UKGgGR0BwTsTxoZhsaAdNUAFoCEdAn1NF1nuiOHV9lChoBkdAcvpOJtSAH2gHTU4BaAhHQJ9Tl/EwWWR1fZQoaAZHQHBikQ5FPSFoB00SAWgIR0CfU5jps41hdX2UKGgGR0BxBr876pHaaAdNYAFoCEdAn1QDG5tm+XV9lChoBkdAcXwJtix3V2gHTTIBaAhHQJ9UCdwvQF91fZQoaAZHQHGQJgCwKShoB00LAWgIR0CfVb8RL9MsdX2UKGgGR0Bvy2FDfFaTaAdNMQFoCEdAn1XHpOerdXV9lChoBkdARYyH9FWn0mgHS9poCEdAn1XWMju8b3V9lChoBkdAUXU5ggHNYGgHS/hoCEdAn1XWm1pj+nV9lChoBkdAcMIMg2ZRbmgHTS0BaAhHQJ9WFwo9cKR1fZQoaAZHQHLlWJrLyMFoB00gAWgIR0CfWHayKNyYdX2UKGgGR0Bwqm6y0KJEaAdL9mgIR0CfWYEZzgdfdX2UKGgGR0BxC1eXzDoAaAdNCwFoCEdAn1sVinYQKHV9lChoBkdAcI70VrRBvGgHTQMBaAhHQJ9bkGqxTsJ1fZQoaAZHQHAxJhF3IMloB000AWgIR0CfXDBppN9IdX2UKGgGR0Bt/yW3Sa3JaAdNCQFoCEdAn1zXtF8XvnV9lChoBkdAcE5KVY6nzmgHTUwBaAhHQJ9fG/wiJO51fZQoaAZHQHDg/j0cwQFoB0v9aAhHQJ9fJ8Aq/dt1fZQoaAZHQHGSYouwostoB01OAWgIR0CfX7I68xsVdX2UKGgGR0ByxFMrVe8gaAdNLwFoCEdAn2Ck9U0el3V9lChoBkdAcPT9zwMH8mgHTTYBaAhHQJ9g/fixVyZ1fZQoaAZHQHLAb/0dzXBoB01IAWgIR0CfYYzZpSJkdX2UKGgGR0BxWemxdIGyaAdNGAFoCEdAn2NVKK5083V9lChoBkdAcvqoPCl7+mgHTRkBaAhHQJ9kiGahHsl1fZQoaAZHQHJIJqIrOJNoB00DAWgIR0CfZbvPkaMrdX2UKGgGR0BxrqSmqHXVaAdNSwFoCEdAn2h/LTx5LXV9lChoBkdAcojALRa5gGgHTTgBaAhHQJ9plLkCFK11fZQoaAZHQHJsXlCCz1NoB00NAWgIR0CfajDlYEGJdX2UKGgGR0BxPVTVDrquaAdNHgFoCEdAn2udI065oXV9lChoBkdAcBaDrqt5lmgHTT4BaAhHQJ9saZc9nsd1fZQoaAZHQGzqyE+PikxoB00bAWgIR0CfbKIuoP07dX2UKGgGR0BnEGNT987ZaAdN6ANoCEdAn2zq2SdOI3V9lChoBkdAchPv7WNFSmgHTS4BaAhHQJ9tvE4vN/x1fZQoaAZHQHMJT8UEgW9oB00YAWgIR0Cfb11vl2eQdX2UKGgGR0Byp05q/M4caAdNcwFoCEdAn3EcFt8/lnV9lChoBkdAcjBCa7VawGgHTQ4BaAhHQJ9xbngYP5J1fZQoaAZHQG/R15a/yoZoB00vAWgIR0CfcYtTUAktdX2UKGgGR0BvwmuaF23baAdNBQFoCEdAn3Tx/iHZb3V9lChoBkdAcss4Oc2BKGgHTQ0BaAhHQJ+IZlZowmF1fZQoaAZHQHBnZPl+3H9oB00UAWgIR0CfiWFlTWGzdX2UKGgGR0BzIzO8kD6naAdNNwFoCEdAn4muDzyz5XV9lChoBkdAcE4wA2hqTWgHTWUBaAhHQJ+JxiqhlDp1fZQoaAZHQHBr4H5aePJoB02LAWgIR0CfinJpFkQPdX2UKGgGR0Bw15RbbDdhaAdNJQFoCEdAn4sY3R5TqHV9lChoBkdAZKI+9Jz1b2gHTegDaAhHQJ+Lwtz0Yj11fZQoaAZHQHE5aG1x82JoB00PAWgIR0Cfi+NhE0BPdX2UKGgGR0Bmh7wKBun/aAdN6ANoCEdAn4wW+wkgOnV9lChoBkdAcFnNB4Uvf2gHTXIBaAhHQJ+M8ToMa0h1fZQoaAZHQHKgFI7Njb1oB00DAWgIR0CfjPrzXjEOdX2UKGgGR0BxWCrcTJyRaAdNDAFoCEdAn42UrPMSsnV9lChoBkdAZwB0aIeo1mgHTegDaAhHQJ+OS3BpHqh1fZQoaAZHQHHEqVdHDrJoB01KAWgIR0Cfj1Ackt2+dX2UKGgGR0BxMuhRIjGDaAdNGAFoCEdAn5COOCGvfXV9lChoBkdAcGpoN/e+EmgHTYgDaAhHQJ+RY3fhuO11fZQoaAZHQG35OP/7zkJoB00aAWgIR0CfktV81Gb1dX2UKGgGR0BxPdt0mtyQaAdNCwFoCEdAn5L9Fa0Qb3V9lChoBkdAcJEZUDMeOmgHS/1oCEdAn5Pl/hESd3V9lChoBkdAcKXgZjx0+2gHTTIBaAhHQJ+UrUDuBtl1fZQoaAZHQHBk6Mir1dxoB00uAWgIR0CflSIqslsxdX2UKGgGR0BwxaenQ6ZIaAdNTQFoCEdAn5WnJxNqQHV9lChoBkdAcnsVcUuct2gHTQgBaAhHQJ+Wsy1uzhR1fZQoaAZHQHH1plWfbsZoB004AWgIR0CflsU6PsAvdX2UKGgGR0ByfO7g88s+aAdNIQFoCEdAn5bfsu3+dnV9lChoBkdAcXC6zVtoBmgHTSkBaAhHQJ+XFLCemN11fZQoaAZHQHMy6khzNlloB00TAWgIR0Cfl81og3cYdX2UKGgGR0BxlZqBVdX1aAdNZwFoCEdAn5f04m1IAnV9lChoBkdAbyks7MgU12gHTRIBaAhHQJ+Yy3XqZ+h1fZQoaAZHQHDbl8b70nRoB00EAWgIR0CfmYkJa7mMdX2UKGgGR0Bwuslv60pmaAdNBwFoCEdAn5pSYw7DEXV9lChoBkdAcI6HPNVzZGgHTRUBaAhHQJ+cLFCLMs91fZQoaAZHQG+K3kPtlZpoB00mAWgIR0CfnKmCAc1gdX2UKGgGR0Bvkw0Kqn3taAdNDwFoCEdAn54kw8GLUHV9lChoBkdAbwQXE61b7mgHTTQBaAhHQJ+eQod+5OJ1fZQoaAZHQHINtp/PPcBoB0vyaAhHQJ+e4Ttb9qF1fZQoaAZHQHHjqGL1mJ5oB004AWgIR0CfnyckdFOPdX2UKGgGR0BxrIHSnccmaAdNJgFoCEdAn5+H2mHgxnV9lChoBkdAcTiq7iADrGgHTQsBaAhHQJ+f1R+BpYd1fZQoaAZHQHF9jvE0iyJoB00qAWgIR0CfoLFKCg9NdX2UKGgGR0BvtjaRISUUaAdNJgFoCEdAn6HCzgMtsnV9lChoBkdAcMOaGpMpPWgHTSIBaAhHQJ+hzDxb0OF1fZQoaAZHQHGD8dDIBBBoB01xAWgIR0Cfo3GXXyy2dX2UKGgGR0BtX7ho/RmcaAdNLQFoCEdAn6PnuNPxhHV9lChoBkdAcQ01ivxH5WgHTR0BaAhHQJ+kL5xiobZ1fZQoaAZHQHFR4ZAIIGBoB00rAWgIR0CfppeRgZ0kdX2UKGgGR0BwpRwtJ4B4aAdNNAFoCEdAn6duR9w3pHV9lChoBkdAcDvZpSJj2GgHTRQBaAhHQJ+ogMNMGot1fZQoaAZHQG9GL0z0pVloB00JAWgIR0CfqNTjebd8dX2UKGgGR0ByZGP0Zm7KaAdNNgFoCEdAn6kQgkka/HV9lChoBkdAb4KPVd5Y5mgHTRwBaAhHQJ+pJK15Sm91ZS4="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}