--- license: llama3 base_model: Minbyul/llama3-8b-instruct-wo-kqa_golden-iter-sft-step1 tags: - alignment-handbook - trl - dpo - generated_from_trainer - trl - dpo - alignment-handbook - generated_from_trainer datasets: - HuggingFaceH4/ultrafeedback_binarized model-index: - name: llama3-8b-instruct-wo-kqa_golden-iter-dpo-step1 results: [] --- # llama3-8b-instruct-wo-kqa_golden-iter-dpo-step1 This model is a fine-tuned version of [Minbyul/llama3-8b-instruct-wo-kqa_golden-iter-sft-step1](https://huggingface.co/Minbyul/llama3-8b-instruct-wo-kqa_golden-iter-sft-step1) on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set: - Loss: 0.6931 - Rewards/chosen: 0.0 - Rewards/rejected: 0.0 - Rewards/accuracies: 0.0 - Rewards/margins: 0.0 - Logps/rejected: -369.7173 - Logps/chosen: -476.8867 - Logits/rejected: -0.5081 - Logits/chosen: -0.6523 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.15.2