File size: 1,725 Bytes
f993978
 
 
96be2f4
 
 
 
f993978
 
 
 
96be2f4
f993978
 
 
 
 
 
 
 
 
 
96be2f4
f993978
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
base_model: dmis-lab/selfbiorag_7b
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
- trl
- sft
- generated_from_trainer
datasets:
- HuggingFaceH4/deita-10k-v0-sft
model-index:
- name: selfbiorag-7b-wo-healthsearch_qa-sft
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# selfbiorag-7b-wo-healthsearch_qa-sft

This model is a fine-tuned version of [dmis-lab/selfbiorag_7b](https://huggingface.co/dmis-lab/selfbiorag_7b) on the HuggingFaceH4/deita-10k-v0-sft dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3069

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.9259        | 0.89  | 2    | 1.3514          |
| 1.9259        | 1.78  | 4    | 1.3406          |
| 1.5784        | 2.67  | 6    | 1.3069          |


### Framework versions

- Transformers 4.39.0.dev0
- Pytorch 2.1.2
- Datasets 2.14.6
- Tokenizers 0.15.2