Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +95 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -3.96 +/- 1.11
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b20c4d377882d4f188504ef4ffa9730e037f55a698a874894dd671dfaff0f975
|
3 |
+
size 108032
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f7de8ea7040>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f7de8ea48c0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1690748711443245522,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"lr_schedule": {
|
31 |
+
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
33 |
+
},
|
34 |
+
"_last_obs": {
|
35 |
+
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA+ITbPqBVnLyf3BQ/+ITbPqBVnLyf3BQ/+ITbPqBVnLyf3BQ/+ITbPqBVnLyf3BQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA4iW8P/6IPz+9vqw/Jm48PwAtY79QTdA/BYR9vpL2Cz9RvLS+0mnHvx2xBr+unJ2/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD4hNs+oFWcvJ/cFD83prI7sCtgutT9KDz4hNs+oFWcvJ/cFD83prI7sCtgutT9KDz4hNs+oFWcvJ/cFD83prI7sCtgutT9KDz4hNs+oFWcvJ/cFD83prI7sCtgutT9KDyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[ 0.42874885 -0.0190838 0.5814914 ]\n [ 0.42874885 -0.0190838 0.5814914 ]\n [ 0.42874885 -0.0190838 0.5814914 ]\n [ 0.42874885 -0.0190838 0.5814914 ]]",
|
38 |
+
"desired_goal": "[[ 1.4699061 0.7481841 1.3495709 ]\n [ 0.73605573 -0.8874054 1.6273594 ]\n [-0.24757393 0.5467311 -0.35299924]\n [-1.5579169 -0.52614003 -1.231344 ]]",
|
39 |
+
"observation": "[[ 0.42874885 -0.0190838 0.5814914 0.00545194 -0.00085514 0.01031442]\n [ 0.42874885 -0.0190838 0.5814914 0.00545194 -0.00085514 0.01031442]\n [ 0.42874885 -0.0190838 0.5814914 0.00545194 -0.00085514 0.01031442]\n [ 0.42874885 -0.0190838 0.5814914 0.00545194 -0.00085514 0.01031442]]"
|
40 |
+
},
|
41 |
+
"_last_episode_starts": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
44 |
+
},
|
45 |
+
"_last_original_obs": {
|
46 |
+
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAVnzLvUE6ej3h/F09KFYGPHE/Gj0w4Is9vLm6PHaUlb0RkRg+IW7VPXzWrD1iZDQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[-0.09935825 0.06109071 0.05419624]\n [ 0.00819925 0.03765816 0.0682987 ]\n [ 0.02279364 -0.07303707 0.14899088]\n [ 0.10421396 0.08439347 0.17616418]]",
|
50 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
+
},
|
52 |
+
"_episode_num": 0,
|
53 |
+
"use_sde": false,
|
54 |
+
"sde_sample_freq": -1,
|
55 |
+
"_current_progress_remaining": 0.0,
|
56 |
+
"_stats_window_size": 100,
|
57 |
+
"ep_info_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8tO4N78h9r+UhpRSlIwBbJRLMowBdJRHQKf4yvRJEpl1fZQoaAZoCWgPQwgpmDEFa7wHwJSGlFKUaBVLMmgWR0Cn+HttQ9A5dX2UKGgGaAloD0MI+P4G7dWnFMCUhpRSlGgVSzJoFkdAp/gr9GZuynV9lChoBmgJaA9DCKck63B0VQ7AlIaUUpRoFUsyaBZHQKf34mMwUQF1fZQoaAZoCWgPQwgrGJXUCagUwJSGlFKUaBVLMmgWR0Cn+c6+vhZRdX2UKGgGaAloD0MIeZPfopNlCcCUhpRSlGgVSzJoFkdAp/l/IGQjlnV9lChoBmgJaA9DCLWn5JzYww/AlIaUUpRoFUsyaBZHQKf5L3pOerd1fZQoaAZoCWgPQwiXqrTFNb4NwJSGlFKUaBVLMmgWR0Cn+OXizcASdX2UKGgGaAloD0MIvOtsyD+zA8CUhpRSlGgVSzJoFkdAp/ri2jO9nXV9lChoBmgJaA9DCKAy/n3GBQvAlIaUUpRoFUsyaBZHQKf6k4CIUJx1fZQoaAZoCWgPQwhzafzCK2kEwJSGlFKUaBVLMmgWR0Cn+kPfCQ9zdX2UKGgGaAloD0MIblLRWPtrEcCUhpRSlGgVSzJoFkdAp/n6PKdQPHV9lChoBmgJaA9DCFT9SufDM/6/lIaUUpRoFUsyaBZHQKf7/va11GN1fZQoaAZoCWgPQwjmdcQhG6gHwJSGlFKUaBVLMmgWR0Cn+6/1HvtudX2UKGgGaAloD0MIxjNo6J/gEsCUhpRSlGgVSzJoFkdAp/tgnjQzDXV9lChoBmgJaA9DCCyDaoMTkRnAlIaUUpRoFUsyaBZHQKf7Fx3mmtR1fZQoaAZoCWgPQwhJnYAmwuYKwJSGlFKUaBVLMmgWR0Cn/QCXY150dX2UKGgGaAloD0MIW9B7YwhgD8CUhpRSlGgVSzJoFkdAp/yxChN/OXV9lChoBmgJaA9DCMEeEynNhgzAlIaUUpRoFUsyaBZHQKf8YVLzwtt1fZQoaAZoCWgPQwhD4h5LHyoQwJSGlFKUaBVLMmgWR0Cn/BfXPJJYdX2UKGgGaAloD0MIkIZT5uZ7D8CUhpRSlGgVSzJoFkdAp/4JeAuqWHV9lChoBmgJaA9DCNZyZyYYjvu/lIaUUpRoFUsyaBZHQKf9ucmShal1fZQoaAZoCWgPQwhG09nJ4GgUwJSGlFKUaBVLMmgWR0Cn/WpBomG/dX2UKGgGaAloD0MIUaIlj6dl/L+UhpRSlGgVSzJoFkdAp/0gtDlYEHV9lChoBmgJaA9DCEZ7vJAOvxzAlIaUUpRoFUsyaBZHQKf/KinpB5Z1fZQoaAZoCWgPQwiMoDGTqNcGwJSGlFKUaBVLMmgWR0Cn/tp+tr9EdX2UKGgGaAloD0MIJO8cylBVAsCUhpRSlGgVSzJoFkdAp/6K7TUiIXV9lChoBmgJaA9DCLHbZ5WZ8gfAlIaUUpRoFUsyaBZHQKf+QXO4XoF1fZQoaAZoCWgPQwgKoBhZMjcawJSGlFKUaBVLMmgWR0CoADZHVf/ndX2UKGgGaAloD0MI8iIT8GsUEcCUhpRSlGgVSzJoFkdAp//mjua4MHV9lChoBmgJaA9DCJZCIJc40gPAlIaUUpRoFUsyaBZHQKf/lseGO+91fZQoaAZoCWgPQwgtB3qobQP5v5SGlFKUaBVLMmgWR0Cn/01CgK4QdX2UKGgGaAloD0MI3Zcz2xWKGcCUhpRSlGgVSzJoFkdAqAFZ2MbWE3V9lChoBmgJaA9DCMUe2scK/gDAlIaUUpRoFUsyaBZHQKgBChf0Eox1fZQoaAZoCWgPQwg/xAYLJykTwJSGlFKUaBVLMmgWR0CoALrgn+hodX2UKGgGaAloD0MItvRoqifTFcCUhpRSlGgVSzJoFkdAqABxZ6lchXV9lChoBmgJaA9DCLMkQE0tuxXAlIaUUpRoFUsyaBZHQKgCcH2RJVd1fZQoaAZoCWgPQwj6muWy0ZkGwJSGlFKUaBVLMmgWR0CoAiD/MnqndX2UKGgGaAloD0MIpUkp6PaSGcCUhpRSlGgVSzJoFkdAqAHRUo8ZDXV9lChoBmgJaA9DCJAxdy0hHwfAlIaUUpRoFUsyaBZHQKgBh8kUsWh1fZQoaAZoCWgPQwiu78NBQiQWwJSGlFKUaBVLMmgWR0CoA3hHskY5dX2UKGgGaAloD0MIs193uvNkDcCUhpRSlGgVSzJoFkdAqAMo0waisXV9lChoBmgJaA9DCNxLGqN1VA3AlIaUUpRoFUsyaBZHQKgC2SaEzwd1fZQoaAZoCWgPQwhwIvq19SMawJSGlFKUaBVLMmgWR0CoAo/JV81GdX2UKGgGaAloD0MIgNWRI51B+r+UhpRSlGgVSzJoFkdAqASubI91U3V9lChoBmgJaA9DCD1+b9OffRfAlIaUUpRoFUsyaBZHQKgEXqoqCpZ1fZQoaAZoCWgPQwgPmIdM+aAVwJSGlFKUaBVLMmgWR0CoBA8Rcu8LdX2UKGgGaAloD0MIDveRW5OOBMCUhpRSlGgVSzJoFkdAqAPGelKsdXV9lChoBmgJaA9DCLJkjuVdlQ3AlIaUUpRoFUsyaBZHQKgFsa7VawF1fZQoaAZoCWgPQwjjx5i7llD/v5SGlFKUaBVLMmgWR0CoBWHivPkadX2UKGgGaAloD0MIa2PshJcQE8CUhpRSlGgVSzJoFkdAqAUSQT238XV9lChoBmgJaA9DCHgKuVLPwhbAlIaUUpRoFUsyaBZHQKgEyM2FWXF1fZQoaAZoCWgPQwgCK4cW2e4EwJSGlFKUaBVLMmgWR0CoBsU65oXbdX2UKGgGaAloD0MIYAMixJWzFMCUhpRSlGgVSzJoFkdAqAZ2W0JF9nV9lChoBmgJaA9DCHCX/brT3QnAlIaUUpRoFUsyaBZHQKgGJ3zMA3l1fZQoaAZoCWgPQwgMB0KygMkQwJSGlFKUaBVLMmgWR0CoBd5XdTHbdX2UKGgGaAloD0MIRNsxdVcmFMCUhpRSlGgVSzJoFkdAqAfMoa1kUnV9lChoBmgJaA9DCFgbYye8ZA/AlIaUUpRoFUsyaBZHQKgHfNwBHTZ1fZQoaAZoCWgPQwh5IojzcBIVwJSGlFKUaBVLMmgWR0CoBy06xPfsdX2UKGgGaAloD0MI965BX3qrFcCUhpRSlGgVSzJoFkdAqAbjgdfb9XV9lChoBmgJaA9DCKcC7nn+1AbAlIaUUpRoFUsyaBZHQKgI1LAYYSB1fZQoaAZoCWgPQwjE0sCPavgLwJSGlFKUaBVLMmgWR0CoCIT8P4EfdX2UKGgGaAloD0MIMiJRaFk3/L+UhpRSlGgVSzJoFkdAqAg1poK2KHV9lChoBmgJaA9DCN/98V610gXAlIaUUpRoFUsyaBZHQKgH7DvVmSR1fZQoaAZoCWgPQwiMo3ITtdQIwJSGlFKUaBVLMmgWR0CoCgZ4GD+SdX2UKGgGaAloD0MIFLGIYYcRHcCUhpRSlGgVSzJoFkdAqAm232EkB3V9lChoBmgJaA9DCNUgzO1ebgjAlIaUUpRoFUsyaBZHQKgJaEEC/491fZQoaAZoCWgPQwjl0viFV5IRwJSGlFKUaBVLMmgWR0CoCR6unuRcdX2UKGgGaAloD0MIu2HboswmAsCUhpRSlGgVSzJoFkdAqAs8mhM8HXV9lChoBmgJaA9DCPN1Gf7Tjfe/lIaUUpRoFUsyaBZHQKgK7Ot4iX91fZQoaAZoCWgPQwgcRdYaSm0UwJSGlFKUaBVLMmgWR0CoCp0+LWI5dX2UKGgGaAloD0MIEoQroFAPEcCUhpRSlGgVSzJoFkdAqApUETxoZnV9lChoBmgJaA9DCAAd5ssLMArAlIaUUpRoFUsyaBZHQKgMZqB3A211fZQoaAZoCWgPQwiY273cJ4cOwJSGlFKUaBVLMmgWR0CoDBcJlar4dX2UKGgGaAloD0MIdJmaBG/oF8CUhpRSlGgVSzJoFkdAqAvHai9Iw3V9lChoBmgJaA9DCNOGw9LAHxPAlIaUUpRoFUsyaBZHQKgLfg2Ifr91fZQoaAZoCWgPQwhr8/+qI8cOwJSGlFKUaBVLMmgWR0CoDXpGWldkdX2UKGgGaAloD0MIEi9P54ryAMCUhpRSlGgVSzJoFkdAqA0qwY+B6XV9lChoBmgJaA9DCNmwprIoDBbAlIaUUpRoFUsyaBZHQKgM20elsP91fZQoaAZoCWgPQwg+zcmLTKAZwJSGlFKUaBVLMmgWR0CoDJG5MDfWdX2UKGgGaAloD0MIwyy0c5pF/b+UhpRSlGgVSzJoFkdAqA6JKHwgDHV9lChoBmgJaA9DCMBBe/XxsA/AlIaUUpRoFUsyaBZHQKgOOYbbUPR1fZQoaAZoCWgPQwi/R/31ClsXwJSGlFKUaBVLMmgWR0CoDenzg/C7dX2UKGgGaAloD0MIX0VGByRBA8CUhpRSlGgVSzJoFkdAqA2gXwb2lHV9lChoBmgJaA9DCNQq+kMzj/y/lIaUUpRoFUsyaBZHQKgPpANXo1V1fZQoaAZoCWgPQwj/eRowSBoLwJSGlFKUaBVLMmgWR0CoD1Rc3VCpdX2UKGgGaAloD0MIBWnGoumcE8CUhpRSlGgVSzJoFkdAqA8ExGlQ/HV9lChoBmgJaA9DCLwH6L6ceRrAlIaUUpRoFUsyaBZHQKgOu0j1PFh1fZQoaAZoCWgPQwiiz0cZcYEQwJSGlFKUaBVLMmgWR0CoEKFKCg9NdX2UKGgGaAloD0MIumkzTkP0FMCUhpRSlGgVSzJoFkdAqBBRiqhlDnV9lChoBmgJaA9DCLVv7q8elxjAlIaUUpRoFUsyaBZHQKgQAfozN2V1fZQoaAZoCWgPQwg8MevFUC4EwJSGlFKUaBVLMmgWR0CoD7hz3h4udX2UKGgGaAloD0MIwlCHFW4ZA8CUhpRSlGgVSzJoFkdAqBH7iXIEKXV9lChoBmgJaA9DCIgrZ++MdgHAlIaUUpRoFUsyaBZHQKgRrQD3dsV1fZQoaAZoCWgPQwhdF35wPtULwJSGlFKUaBVLMmgWR0CoEV1dHDrJdX2UKGgGaAloD0MIscHCSZo/AMCUhpRSlGgVSzJoFkdAqBET06HTJHV9lChoBmgJaA9DCCwoDMo0GhXAlIaUUpRoFUsyaBZHQKgTH+l0o0B1fZQoaAZoCWgPQwimnC/2XuwXwJSGlFKUaBVLMmgWR0CoEtBE8aGYdX2UKGgGaAloD0MIl6lJ8IYEGsCUhpRSlGgVSzJoFkdAqBKAnKGL1nV9lChoBmgJaA9DCDoi36XUZQrAlIaUUpRoFUsyaBZHQKgSNv+fh/B1ZS4="
|
60 |
+
},
|
61 |
+
"ep_success_buffer": {
|
62 |
+
":type:": "<class 'collections.deque'>",
|
63 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
+
},
|
65 |
+
"_n_updates": 50000,
|
66 |
+
"n_steps": 5,
|
67 |
+
"gamma": 0.99,
|
68 |
+
"gae_lambda": 1.0,
|
69 |
+
"ent_coef": 0.0,
|
70 |
+
"vf_coef": 0.5,
|
71 |
+
"max_grad_norm": 0.5,
|
72 |
+
"normalize_advantage": false,
|
73 |
+
"observation_space": {
|
74 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
75 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
76 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
77 |
+
"_shape": null,
|
78 |
+
"dtype": null,
|
79 |
+
"_np_random": null
|
80 |
+
},
|
81 |
+
"action_space": {
|
82 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
83 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
84 |
+
"dtype": "float32",
|
85 |
+
"_shape": [
|
86 |
+
3
|
87 |
+
],
|
88 |
+
"low": "[-1. -1. -1.]",
|
89 |
+
"high": "[1. 1. 1.]",
|
90 |
+
"bounded_below": "[ True True True]",
|
91 |
+
"bounded_above": "[ True True True]",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 4
|
95 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:30c9301252245b02b0c9303a08be07c5d1f103d59d91df826455d3b1a0a8077b
|
3 |
+
size 44670
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:35153fa7723fce5f20974eb4049aa7c649389dc2e235cd6b25c3f3eb00f982e2
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.19.0-45-generic-x86_64-with-glibc2.31 # 46~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Wed Jun 7 15:06:04 UTC 20
|
2 |
+
- Python: 3.9.17
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 1.12.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f7de8ea7040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f7de8ea48c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690748711443245522, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA+ITbPqBVnLyf3BQ/+ITbPqBVnLyf3BQ/+ITbPqBVnLyf3BQ/+ITbPqBVnLyf3BQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA4iW8P/6IPz+9vqw/Jm48PwAtY79QTdA/BYR9vpL2Cz9RvLS+0mnHvx2xBr+unJ2/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD4hNs+oFWcvJ/cFD83prI7sCtgutT9KDz4hNs+oFWcvJ/cFD83prI7sCtgutT9KDz4hNs+oFWcvJ/cFD83prI7sCtgutT9KDz4hNs+oFWcvJ/cFD83prI7sCtgutT9KDyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.42874885 -0.0190838 0.5814914 ]\n [ 0.42874885 -0.0190838 0.5814914 ]\n [ 0.42874885 -0.0190838 0.5814914 ]\n [ 0.42874885 -0.0190838 0.5814914 ]]", "desired_goal": "[[ 1.4699061 0.7481841 1.3495709 ]\n [ 0.73605573 -0.8874054 1.6273594 ]\n [-0.24757393 0.5467311 -0.35299924]\n [-1.5579169 -0.52614003 -1.231344 ]]", "observation": "[[ 0.42874885 -0.0190838 0.5814914 0.00545194 -0.00085514 0.01031442]\n [ 0.42874885 -0.0190838 0.5814914 0.00545194 -0.00085514 0.01031442]\n [ 0.42874885 -0.0190838 0.5814914 0.00545194 -0.00085514 0.01031442]\n [ 0.42874885 -0.0190838 0.5814914 0.00545194 -0.00085514 0.01031442]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAVnzLvUE6ej3h/F09KFYGPHE/Gj0w4Is9vLm6PHaUlb0RkRg+IW7VPXzWrD1iZDQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.09935825 0.06109071 0.05419624]\n [ 0.00819925 0.03765816 0.0682987 ]\n [ 0.02279364 -0.07303707 0.14899088]\n [ 0.10421396 0.08439347 0.17616418]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8tO4N78h9r+UhpRSlIwBbJRLMowBdJRHQKf4yvRJEpl1fZQoaAZoCWgPQwgpmDEFa7wHwJSGlFKUaBVLMmgWR0Cn+HttQ9A5dX2UKGgGaAloD0MI+P4G7dWnFMCUhpRSlGgVSzJoFkdAp/gr9GZuynV9lChoBmgJaA9DCKck63B0VQ7AlIaUUpRoFUsyaBZHQKf34mMwUQF1fZQoaAZoCWgPQwgrGJXUCagUwJSGlFKUaBVLMmgWR0Cn+c6+vhZRdX2UKGgGaAloD0MIeZPfopNlCcCUhpRSlGgVSzJoFkdAp/l/IGQjlnV9lChoBmgJaA9DCLWn5JzYww/AlIaUUpRoFUsyaBZHQKf5L3pOerd1fZQoaAZoCWgPQwiXqrTFNb4NwJSGlFKUaBVLMmgWR0Cn+OXizcASdX2UKGgGaAloD0MIvOtsyD+zA8CUhpRSlGgVSzJoFkdAp/ri2jO9nXV9lChoBmgJaA9DCKAy/n3GBQvAlIaUUpRoFUsyaBZHQKf6k4CIUJx1fZQoaAZoCWgPQwhzafzCK2kEwJSGlFKUaBVLMmgWR0Cn+kPfCQ9zdX2UKGgGaAloD0MIblLRWPtrEcCUhpRSlGgVSzJoFkdAp/n6PKdQPHV9lChoBmgJaA9DCFT9SufDM/6/lIaUUpRoFUsyaBZHQKf7/va11GN1fZQoaAZoCWgPQwjmdcQhG6gHwJSGlFKUaBVLMmgWR0Cn+6/1HvtudX2UKGgGaAloD0MIxjNo6J/gEsCUhpRSlGgVSzJoFkdAp/tgnjQzDXV9lChoBmgJaA9DCCyDaoMTkRnAlIaUUpRoFUsyaBZHQKf7Fx3mmtR1fZQoaAZoCWgPQwhJnYAmwuYKwJSGlFKUaBVLMmgWR0Cn/QCXY150dX2UKGgGaAloD0MIW9B7YwhgD8CUhpRSlGgVSzJoFkdAp/yxChN/OXV9lChoBmgJaA9DCMEeEynNhgzAlIaUUpRoFUsyaBZHQKf8YVLzwtt1fZQoaAZoCWgPQwhD4h5LHyoQwJSGlFKUaBVLMmgWR0Cn/BfXPJJYdX2UKGgGaAloD0MIkIZT5uZ7D8CUhpRSlGgVSzJoFkdAp/4JeAuqWHV9lChoBmgJaA9DCNZyZyYYjvu/lIaUUpRoFUsyaBZHQKf9ucmShal1fZQoaAZoCWgPQwhG09nJ4GgUwJSGlFKUaBVLMmgWR0Cn/WpBomG/dX2UKGgGaAloD0MIUaIlj6dl/L+UhpRSlGgVSzJoFkdAp/0gtDlYEHV9lChoBmgJaA9DCEZ7vJAOvxzAlIaUUpRoFUsyaBZHQKf/KinpB5Z1fZQoaAZoCWgPQwiMoDGTqNcGwJSGlFKUaBVLMmgWR0Cn/tp+tr9EdX2UKGgGaAloD0MIJO8cylBVAsCUhpRSlGgVSzJoFkdAp/6K7TUiIXV9lChoBmgJaA9DCLHbZ5WZ8gfAlIaUUpRoFUsyaBZHQKf+QXO4XoF1fZQoaAZoCWgPQwgKoBhZMjcawJSGlFKUaBVLMmgWR0CoADZHVf/ndX2UKGgGaAloD0MI8iIT8GsUEcCUhpRSlGgVSzJoFkdAp//mjua4MHV9lChoBmgJaA9DCJZCIJc40gPAlIaUUpRoFUsyaBZHQKf/lseGO+91fZQoaAZoCWgPQwgtB3qobQP5v5SGlFKUaBVLMmgWR0Cn/01CgK4QdX2UKGgGaAloD0MI3Zcz2xWKGcCUhpRSlGgVSzJoFkdAqAFZ2MbWE3V9lChoBmgJaA9DCMUe2scK/gDAlIaUUpRoFUsyaBZHQKgBChf0Eox1fZQoaAZoCWgPQwg/xAYLJykTwJSGlFKUaBVLMmgWR0CoALrgn+hodX2UKGgGaAloD0MItvRoqifTFcCUhpRSlGgVSzJoFkdAqABxZ6lchXV9lChoBmgJaA9DCLMkQE0tuxXAlIaUUpRoFUsyaBZHQKgCcH2RJVd1fZQoaAZoCWgPQwj6muWy0ZkGwJSGlFKUaBVLMmgWR0CoAiD/MnqndX2UKGgGaAloD0MIpUkp6PaSGcCUhpRSlGgVSzJoFkdAqAHRUo8ZDXV9lChoBmgJaA9DCJAxdy0hHwfAlIaUUpRoFUsyaBZHQKgBh8kUsWh1fZQoaAZoCWgPQwiu78NBQiQWwJSGlFKUaBVLMmgWR0CoA3hHskY5dX2UKGgGaAloD0MIs193uvNkDcCUhpRSlGgVSzJoFkdAqAMo0waisXV9lChoBmgJaA9DCNxLGqN1VA3AlIaUUpRoFUsyaBZHQKgC2SaEzwd1fZQoaAZoCWgPQwhwIvq19SMawJSGlFKUaBVLMmgWR0CoAo/JV81GdX2UKGgGaAloD0MIgNWRI51B+r+UhpRSlGgVSzJoFkdAqASubI91U3V9lChoBmgJaA9DCD1+b9OffRfAlIaUUpRoFUsyaBZHQKgEXqoqCpZ1fZQoaAZoCWgPQwgPmIdM+aAVwJSGlFKUaBVLMmgWR0CoBA8Rcu8LdX2UKGgGaAloD0MIDveRW5OOBMCUhpRSlGgVSzJoFkdAqAPGelKsdXV9lChoBmgJaA9DCLJkjuVdlQ3AlIaUUpRoFUsyaBZHQKgFsa7VawF1fZQoaAZoCWgPQwjjx5i7llD/v5SGlFKUaBVLMmgWR0CoBWHivPkadX2UKGgGaAloD0MIa2PshJcQE8CUhpRSlGgVSzJoFkdAqAUSQT238XV9lChoBmgJaA9DCHgKuVLPwhbAlIaUUpRoFUsyaBZHQKgEyM2FWXF1fZQoaAZoCWgPQwgCK4cW2e4EwJSGlFKUaBVLMmgWR0CoBsU65oXbdX2UKGgGaAloD0MIYAMixJWzFMCUhpRSlGgVSzJoFkdAqAZ2W0JF9nV9lChoBmgJaA9DCHCX/brT3QnAlIaUUpRoFUsyaBZHQKgGJ3zMA3l1fZQoaAZoCWgPQwgMB0KygMkQwJSGlFKUaBVLMmgWR0CoBd5XdTHbdX2UKGgGaAloD0MIRNsxdVcmFMCUhpRSlGgVSzJoFkdAqAfMoa1kUnV9lChoBmgJaA9DCFgbYye8ZA/AlIaUUpRoFUsyaBZHQKgHfNwBHTZ1fZQoaAZoCWgPQwh5IojzcBIVwJSGlFKUaBVLMmgWR0CoBy06xPfsdX2UKGgGaAloD0MI965BX3qrFcCUhpRSlGgVSzJoFkdAqAbjgdfb9XV9lChoBmgJaA9DCKcC7nn+1AbAlIaUUpRoFUsyaBZHQKgI1LAYYSB1fZQoaAZoCWgPQwjE0sCPavgLwJSGlFKUaBVLMmgWR0CoCIT8P4EfdX2UKGgGaAloD0MIMiJRaFk3/L+UhpRSlGgVSzJoFkdAqAg1poK2KHV9lChoBmgJaA9DCN/98V610gXAlIaUUpRoFUsyaBZHQKgH7DvVmSR1fZQoaAZoCWgPQwiMo3ITtdQIwJSGlFKUaBVLMmgWR0CoCgZ4GD+SdX2UKGgGaAloD0MIFLGIYYcRHcCUhpRSlGgVSzJoFkdAqAm232EkB3V9lChoBmgJaA9DCNUgzO1ebgjAlIaUUpRoFUsyaBZHQKgJaEEC/491fZQoaAZoCWgPQwjl0viFV5IRwJSGlFKUaBVLMmgWR0CoCR6unuRcdX2UKGgGaAloD0MIu2HboswmAsCUhpRSlGgVSzJoFkdAqAs8mhM8HXV9lChoBmgJaA9DCPN1Gf7Tjfe/lIaUUpRoFUsyaBZHQKgK7Ot4iX91fZQoaAZoCWgPQwgcRdYaSm0UwJSGlFKUaBVLMmgWR0CoCp0+LWI5dX2UKGgGaAloD0MIEoQroFAPEcCUhpRSlGgVSzJoFkdAqApUETxoZnV9lChoBmgJaA9DCAAd5ssLMArAlIaUUpRoFUsyaBZHQKgMZqB3A211fZQoaAZoCWgPQwiY273cJ4cOwJSGlFKUaBVLMmgWR0CoDBcJlar4dX2UKGgGaAloD0MIdJmaBG/oF8CUhpRSlGgVSzJoFkdAqAvHai9Iw3V9lChoBmgJaA9DCNOGw9LAHxPAlIaUUpRoFUsyaBZHQKgLfg2Ifr91fZQoaAZoCWgPQwhr8/+qI8cOwJSGlFKUaBVLMmgWR0CoDXpGWldkdX2UKGgGaAloD0MIEi9P54ryAMCUhpRSlGgVSzJoFkdAqA0qwY+B6XV9lChoBmgJaA9DCNmwprIoDBbAlIaUUpRoFUsyaBZHQKgM20elsP91fZQoaAZoCWgPQwg+zcmLTKAZwJSGlFKUaBVLMmgWR0CoDJG5MDfWdX2UKGgGaAloD0MIwyy0c5pF/b+UhpRSlGgVSzJoFkdAqA6JKHwgDHV9lChoBmgJaA9DCMBBe/XxsA/AlIaUUpRoFUsyaBZHQKgOOYbbUPR1fZQoaAZoCWgPQwi/R/31ClsXwJSGlFKUaBVLMmgWR0CoDenzg/C7dX2UKGgGaAloD0MIX0VGByRBA8CUhpRSlGgVSzJoFkdAqA2gXwb2lHV9lChoBmgJaA9DCNQq+kMzj/y/lIaUUpRoFUsyaBZHQKgPpANXo1V1fZQoaAZoCWgPQwj/eRowSBoLwJSGlFKUaBVLMmgWR0CoD1Rc3VCpdX2UKGgGaAloD0MIBWnGoumcE8CUhpRSlGgVSzJoFkdAqA8ExGlQ/HV9lChoBmgJaA9DCLwH6L6ceRrAlIaUUpRoFUsyaBZHQKgOu0j1PFh1fZQoaAZoCWgPQwiiz0cZcYEQwJSGlFKUaBVLMmgWR0CoEKFKCg9NdX2UKGgGaAloD0MIumkzTkP0FMCUhpRSlGgVSzJoFkdAqBBRiqhlDnV9lChoBmgJaA9DCLVv7q8elxjAlIaUUpRoFUsyaBZHQKgQAfozN2V1fZQoaAZoCWgPQwg8MevFUC4EwJSGlFKUaBVLMmgWR0CoD7hz3h4udX2UKGgGaAloD0MIwlCHFW4ZA8CUhpRSlGgVSzJoFkdAqBH7iXIEKXV9lChoBmgJaA9DCIgrZ++MdgHAlIaUUpRoFUsyaBZHQKgRrQD3dsV1fZQoaAZoCWgPQwhdF35wPtULwJSGlFKUaBVLMmgWR0CoEV1dHDrJdX2UKGgGaAloD0MIscHCSZo/AMCUhpRSlGgVSzJoFkdAqBET06HTJHV9lChoBmgJaA9DCCwoDMo0GhXAlIaUUpRoFUsyaBZHQKgTH+l0o0B1fZQoaAZoCWgPQwimnC/2XuwXwJSGlFKUaBVLMmgWR0CoEtBE8aGYdX2UKGgGaAloD0MIl6lJ8IYEGsCUhpRSlGgVSzJoFkdAqBKAnKGL1nV9lChoBmgJaA9DCDoi36XUZQrAlIaUUpRoFUsyaBZHQKgSNv+fh/B1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.19.0-45-generic-x86_64-with-glibc2.31 # 46~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Wed Jun 7 15:06:04 UTC 20", "Python": "3.9.17", "Stable-Baselines3": "1.8.0", "PyTorch": "1.12.1+cu116", "GPU Enabled": "True", "Numpy": "1.23.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (781 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -3.9554570288397373, "std_reward": 1.1079401246118585, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-30T21:21:41.640631"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:81d03d7b573c8c640537cd08a982712514dc618810dc0f8d903e09ef2fd219c9
|
3 |
+
size 2381
|