|
"""MiniMaxVL01 model configuration""" |
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
from transformers.models.auto import CONFIG_MAPPING, AutoConfig |
|
from .configuration_minimax_text_01 import MiniMaxText01Config |
|
|
|
|
|
class MiniMaxVL01Config(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`MiniMaxVL01ForConditionalGeneration`]. It is used to instantiate an |
|
MiniMaxVL01 model according to the specified arguments, defining the model architecture. Instantiating a configuration |
|
with the defaults will yield a similar configuration to that of the MiniMaxVL01. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
vision_config (`Union[AutoConfig, dict]`, *optional*, defaults to `CLIPVisionConfig`): |
|
The config object or dictionary of the vision backbone. |
|
text_config (`Union[AutoConfig, dict]`, *optional*, defaults to `MiniMaxText01Config`): |
|
The config object or dictionary of the text backbone. |
|
ignore_index (`int`, *optional*, defaults to -100): |
|
The ignore index for the loss function. |
|
image_token_index (`int`, *optional*, defaults to 32000): |
|
The image token index to encode the image prompt. |
|
projector_hidden_act (`str`, *optional*, defaults to `"gelu"`): |
|
The activation function used by the multimodal projector. |
|
vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`): |
|
The feature selection strategy used to select the vision feature from the vision backbone. |
|
Can be one of `"default"` or `"full"`. If `"default"`, the CLS token is removed from the vision features. |
|
If `"full"`, the full vision features are used. |
|
vision_feature_layer (`int`, *optional*, defaults to -2): |
|
The index of the layer to select the vision feature. |
|
image_grid_pinpoints (`List`, *optional*, defaults to `[[336, 672], [672, 336], [672, 672], [1008, 336], [336, 1008]]`): |
|
A list of possible resolutions to use for processing high resolution images. Each item in the list should be a tuple or list |
|
of the form `(height, width)`. |
|
tie_word_embeddings (`bool`, *optional*, defaults to `False`): |
|
Whether the model's input and output word embeddings should be tied. |
|
image_seq_length (`int`, *optional*, defaults to 576): |
|
Sequence length of one image embedding. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import MiniMaxVL01ForConditionalGeneration, MiniMaxVL01Config, CLIPVisionConfig, MiniMaxText01Config |
|
|
|
>>> # Initializing a CLIP-vision config |
|
>>> vision_config = CLIPVisionConfig() |
|
|
|
>>> # Initializing a MiniMaxText01 config |
|
>>> text_config = MiniMaxText01Config() |
|
|
|
>>> # Initializing a MiniMaxVL01 style configuration |
|
>>> configuration = MiniMaxVL01Config(vision_config, text_config) |
|
|
|
>>> # Initializing a model from the MiniMaxVL01 style configuration |
|
>>> model = MiniMaxVL01ForConditionalGeneration(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
|
|
model_type = "minimax_vl_01" |
|
|
|
def __init__( |
|
self, |
|
vision_config=None, |
|
text_config=None, |
|
ignore_index=-100, |
|
image_token_index=32000, |
|
projector_hidden_act="gelu", |
|
vision_feature_select_strategy="default", |
|
vision_feature_layer=-2, |
|
image_grid_pinpoints=None, |
|
tie_word_embeddings=False, |
|
image_seq_length=576, |
|
**kwargs, |
|
): |
|
self.ignore_index = ignore_index |
|
self.image_token_index = image_token_index |
|
self.projector_hidden_act = projector_hidden_act |
|
self.image_seq_length = image_seq_length |
|
|
|
if vision_feature_select_strategy not in ["default", "full"]: |
|
raise ValueError( |
|
"vision_feature_select_strategy should be one of 'default', 'full'." |
|
f"Got: {vision_feature_select_strategy}" |
|
) |
|
|
|
self.vision_feature_select_strategy = vision_feature_select_strategy |
|
self.vision_feature_layer = vision_feature_layer |
|
image_grid_pinpoints = ( |
|
image_grid_pinpoints |
|
if image_grid_pinpoints is not None |
|
else [[336, 672], [672, 336], [672, 672], [1008, 336], [336, 1008]] |
|
) |
|
self.image_grid_pinpoints = image_grid_pinpoints |
|
|
|
if isinstance(vision_config, dict): |
|
vision_config["model_type"] = ( |
|
vision_config["model_type"] if "model_type" in vision_config else "clip_vision_model" |
|
) |
|
vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config) |
|
elif vision_config is None: |
|
vision_config = CONFIG_MAPPING["clip_vision_model"]( |
|
intermediate_size=4096, |
|
hidden_size=1024, |
|
patch_size=14, |
|
image_size=336, |
|
num_hidden_layers=24, |
|
num_attention_heads=16, |
|
vocab_size=32000, |
|
projection_dim=768, |
|
) |
|
|
|
self.vision_config = vision_config |
|
|
|
if text_config is not None: |
|
assert "model_type" in text_config, "text_config model_type is not specified" |
|
text_config = MiniMaxText01Config(**text_config) |
|
else: |
|
text_config = MiniMaxText01Config() |
|
|
|
self.text_config = text_config |
|
|
|
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs) |
|
|