MiniMax-VL-01 / image_processor.py
MiniMax-AI's picture
Initial Commit
cfde609
raw
history blame
27.2 kB
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
from typing import Optional, Union, Tuple, Dict, List, Iterable
from transformers.image_transforms import to_channel_dimension_format, PaddingMode
from transformers.image_utils import ChannelDimension, to_numpy_array, make_list_of_images, get_image_size, infer_channel_dimension_format
from transformers.utils import TensorType
from PIL import Image
import numpy as np
try:
from torchvision.transforms import InterpolationMode
BICUBIC = InterpolationMode.BICUBIC
except ImportError:
BICUBIC = Image.BICUBIC
import torch
from transformers.utils import (
TensorType,
is_torch_device,
is_torch_dtype,
requires_backends,
)
from torchvision.transforms import Compose, ToTensor, Normalize, ToPILImage, RandomResizedCrop, Resize
try:
from torchvision.transforms import InterpolationMode
BICUBIC = InterpolationMode.BICUBIC
except ImportError:
BICUBIC = Image.BICUBIC
from PIL import Image
import torch
import numpy as np
import os
processor_for_vllm = int(os.getenv("PROCESSOR_FOR_VLLM", 0))
def select_best_resolution(original_size, possible_resolutions):
"""
Selects the best resolution from a list of possible resolutions based on the original size.
Args:
original_size (tuple): The original size of the image in the format (width, height).
possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
Returns:
tuple: The best fit resolution in the format (width, height).
"""
original_width, original_height = original_size
best_fit = None
max_effective_resolution = 0
min_wasted_resolution = float("inf")
for width, height in possible_resolutions:
# Calculate the downscaled size to keep the aspect ratio
scale = min(width / original_width, height / original_height)
downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale)
# Calculate effective and wasted resolutions
effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height)
wasted_resolution = (width * height) - effective_resolution
if effective_resolution > max_effective_resolution or (effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution):
max_effective_resolution = effective_resolution
min_wasted_resolution = wasted_resolution
best_fit = (width, height)
return best_fit
def divide_to_patches(image, patch_size):
"""
Divides an image into patches of a specified size.
Args:
image (PIL.Image.Image): The input image.
patch_size (int): The size of each patch.
Returns:
list: A list of PIL.Image.Image objects representing the patches.
"""
patches = []
width, height = image.size
for i in range(0, height, patch_size):
for j in range(0, width, patch_size):
box = (j, i, j + patch_size, i + patch_size)
patch = image.crop(box)
patches.append(patch)
return patches
def image_size_to_num_patches(image_size, grid_pinpoints, patch_size):
if not isinstance(grid_pinpoints, list):
raise TypeError("grid_pinpoints should be a list of tuples or lists")
# ! VERY IMPORTANT if image_size is tensor, must convert to into tuple, otherwise it will cause wrong calculate
if not isinstance(image_size, (list, tuple)):
if not isinstance(image_size, (torch.Tensor, np.ndarray)):
raise TypeError(f"image_size invalid type {type(image_size)} with value {image_size}")
image_size = image_size.tolist()
best_resolution = select_best_resolution(image_size, grid_pinpoints)
width, height = best_resolution
num_patches = 0
# consider change to ceil(height/patch_size)*ceil(width/patch_size) + 1
for i in range(0, height, patch_size):
for j in range(0, width, patch_size):
num_patches += 1
# add the base patch
num_patches += 1
return num_patches
def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size):
"""
Calculate the shape of the image patch grid after the preprocessing for images of any resolution.
Args:
image_size (`tuple`):
The size of the input image in the format (width, height).
grid_pinpoints (`List`):
A list containing possible resolutions. Each item in the list should be a tuple or list
of the form `(height, width)`.
patch_size (`int`):
The size of each image patch.
Returns:
tuple: The shape of the image patch grid in the format (width, height).
"""
if not isinstance(grid_pinpoints, list):
raise TypeError("grid_pinpoints should be a list of tuples or lists")
# ! VERY IMPORTANT if image_size is tensor, must convert to into tuple, otherwise it will cause wrong calculate
if not isinstance(image_size, (list, tuple)):
if not isinstance(image_size, (torch.Tensor, np.ndarray)):
raise TypeError(
f"image_size invalid type: {type(image_size)} not valid, should be either list, tuple, np.ndarray or tensor"
)
image_size = image_size.tolist()
width, height = select_best_resolution(image_size, grid_pinpoints)
return width // patch_size, height // patch_size
# custom transform
class KeeyRatioResize(object):
def __init__(self, size):
self.size = size
def __call__(self, image):
return keepratio_resize(image, self.size)
def keepratio_resize(image, size, return_scale=False):
# Resize the image to keep the ratio
w, h = image.size
resized_w, resized_h = size
if w / h > resized_w / resized_h:
# resize and pad to the right and left
new_h = int(resized_w*h/w)
resized_image = image.resize((resized_w, new_h), Image.BICUBIC)
image = Image.new('RGB', (resized_w, resized_h), (0, 0, 0))
pad_h = (resized_h - new_h) // 2
image.paste(resized_image, (0, pad_h))
scale = resized_w / w
#image.paste(resized_image, (0, 0))
else:
# resize and pad to the top and bottom
new_w = int(resized_h*w/h)
resized_image = image.resize((new_w, resized_h), Image.BICUBIC)
image = Image.new('RGB', (resized_w, resized_h), (0, 0, 0))
#image.paste(resized_image, (0, 0))
pad_w = (resized_w - new_w) // 2
image.paste(resized_image, (pad_w, 0))
scale = resized_h / h
if return_scale:
return image, scale
return image
def _convert_image_to_rgb(image):
return image.convert("RGB")
def _transform(img_h, img_w, image_mean=(0.48145466, 0.4578275, 0.40821073), image_std=(0.26862954, 0.26130258, 0.27577711)):
return Compose([
# ToPILImage(),
#RandomResizedCrop((img_h, img_w), scale=(0.5, 1.0), interpolation=BICUBIC),
#Resize((img_h, img_w), interpolation=BICUBIC),
_convert_image_to_rgb,
ToTensor(),
Normalize(image_mean, image_std),
])
def get_hw_multiple_of(image_size, multiple, max_size=None):
w, h = image_size
new_w = w if w % multiple == 0 else w + (multiple - w % multiple)
new_h = h if h % multiple == 0 else h + (multiple - h % multiple)
if max_size is not None:
assert isinstance(max_size, (list, tuple)) and len(max_size) == 2
max_w, max_h = max_size
assert max_w % multiple == 0 and max_h % multiple == 0
if new_w > max_w or new_h > max_h:
# ratio = min(max_w / new_w, max_h / new_h)
# new_w = int(new_w * ratio)
# new_h = int(new_h * ratio)
new_w = min((new_w * max_w) // new_w, (new_w * max_h) // new_h)
new_h = min((new_h * max_w) // new_w, (new_h * max_h) // new_h)
new_w = new_w if new_w % multiple == 0 else new_w + (multiple - new_w % multiple)
new_h = new_h if new_h % multiple == 0 else new_h + (multiple - new_h % multiple)
assert new_w % multiple == 0 and new_h % multiple == 0
assert new_w <= max_w and new_h <= max_h
return new_w, new_h
def resize_multiple_of(image, multiple, max_size=None):
"""
Resize the image to the multiple of a number.
Args:
image (PIL.Image.Image): The input image.
multiple (int): The number to which the image should be resized.
Returns:
PIL.Image.Image: The resized image.
"""
width, height = image.size
new_width, new_height = get_hw_multiple_of((width, height), multiple, max_size)
return image.resize((new_width, new_height), Image.BICUBIC)
class CustomBatchFeature(BatchFeature):
def convert_to_tensors(self, tensor_type: Optional[Union[str, TensorType]] = None):
"""
Convert the inner content to tensors.
Args:
tensor_type (`str` or [`~utils.TensorType`], *optional*):
The type of tensors to use. If `str`, should be one of the values of the enum [`~utils.TensorType`]. If
`None`, no modification is done.
"""
if tensor_type is None:
return self
is_tensor, as_tensor = self._get_is_as_tensor_fns(tensor_type)
# Do the tensor conversion in batch
for key, value in self.items():
if key == "pixel_values":
for i, image in enumerate(value):
if not is_tensor(image):
tensor = as_tensor(image)
self[key][i] = tensor
continue
try:
if not is_tensor(value):
tensor = as_tensor(value)
self[key] = tensor
except: # noqa E722
if key == "overflowing_values":
raise ValueError("Unable to create tensor returning overflowing values of different lengths. ")
raise ValueError(
"Unable to create tensor, you should probably activate padding "
"with 'padding=True' to have batched tensors with the same length."
)
return self
def to(self, *args, **kwargs) -> "BatchFeature":
"""
Send all values to device by calling `v.to(*args, **kwargs)` (PyTorch only). This should support casting in
different `dtypes` and sending the `BatchFeature` to a different `device`.
Args:
args (`Tuple`):
Will be passed to the `to(...)` function of the tensors.
kwargs (`Dict`, *optional*):
Will be passed to the `to(...)` function of the tensors.
Returns:
[`BatchFeature`]: The same instance after modification.
"""
requires_backends(self, ["torch"])
import torch # noqa
new_data = {}
device = kwargs.get("device")
# Check if the args are a device or a dtype
if device is None and len(args) > 0:
# device should be always the first argument
arg = args[0]
if is_torch_dtype(arg):
# The first argument is a dtype
pass
elif isinstance(arg, str) or is_torch_device(arg) or isinstance(arg, int):
device = arg
else:
# it's something else
raise ValueError(f"Attempting to cast a BatchFeature to type {str(arg)}. This is not supported.")
# We cast only floating point tensors to avoid issues with tokenizers casting `LongTensor` to `FloatTensor`
for k, v in self.items():
if k == "pixel_values":
new_data[k] = [v[i].to(*args, **kwargs) for i in range(len(v))]
continue
# check if v is a floating point
if torch.is_floating_point(v):
# cast and send to device
new_data[k] = v.to(*args, **kwargs)
elif device is not None:
new_data[k] = v.to(device=device)
else:
new_data[k] = v
self.data = new_data
return self
def as_tensor(value):
if isinstance(value, (list, tuple)) and len(value) > 0:
if isinstance(value[0], np.ndarray):
value = np.array(value)
elif (
isinstance(value[0], (list, tuple))
and len(value[0]) > 0
and isinstance(value[0][0], np.ndarray)
):
value = np.array(value)
if isinstance(value, np.ndarray):
return torch.from_numpy(value)
else:
return torch.tensor(value)
class ImageProcessor(BaseImageProcessor):
model_input_names = ["pixel_values"]
def __init__(
self,
size: Optional[Union[int, Tuple[int, int], Dict[str, int]]] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
process_image_mode: Optional[str] = 'resize',
patch_size: Optional[int] = 14,
image_grid_pinpoints: List = None,
**kwargs,
) -> None:
super().__init__(**kwargs)
self.size = size # (width, height)
self.image_mean = image_mean
self.image_std = image_std
self.process_image_mode = process_image_mode
image_grid_pinpoints = (
image_grid_pinpoints
if image_grid_pinpoints is not None
else [[336, 672], [672, 336], [672, 672], [1008, 336], [336, 1008]]
)
self.image_grid_pinpoints = image_grid_pinpoints
self.patch_size = patch_size
def preprocess(self,
images,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
):
if self.process_image_mode == 'resize':
return self.resize_preprocess(images, return_tensors, data_format, input_data_format, **kwargs)
elif self.process_image_mode == 'anyres':
if processor_for_vllm == 1:
return self.anyres_for_vllm_preprocess(images, return_tensors, data_format, input_data_format, **kwargs)
return self.anyres_preprocess(images, return_tensors, data_format, input_data_format, **kwargs)
elif self.process_image_mode == 'keepratio_resize':
return self.keepratio_resize_preprocess(images, return_tensors, data_format, input_data_format, **kwargs)
elif self.process_image_mode == 'dynamic_res':
return self.dynamic_res_preprocess(images, return_tensors, data_format, input_data_format, **kwargs)
else:
raise ValueError(f"Invalid process_image_mode: {self.process_image_mode}")
def resize_preprocess(self, images, return_tensors: Optional[Union[str, TensorType]] = None, data_format: Optional[ChannelDimension] = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs):
images = make_list_of_images(images)
all_images = []
for image in images:
resized_image = image.resize(self.size, Image.BICUBIC)
transform_img = _transform(self.size[1], self.size[0], self.image_mean, self.image_std)(resized_image)
all_images.append(to_numpy_array(transform_img))
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
for image in all_images
]
data = {"pixel_values": images}
return CustomBatchFeature(data=data, tensor_type=return_tensors)
def keepratio_resize_preprocess(self, images, return_tensors: Optional[Union[str, TensorType]] = None, data_format: Optional[ChannelDimension] = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs):
images = make_list_of_images(images)
all_images = []
for image in images:
resized_image = keepratio_resize(image, self.size)
transform_img = _transform(self.size[1], self.size[0], self.image_mean, self.image_std)(resized_image)
all_images.append(to_numpy_array(transform_img))
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
for image in all_images
]
data = {"pixel_values": images}
return CustomBatchFeature(data=data, tensor_type=return_tensors)
def dynamic_res_preprocess(self, images, return_tensors: Optional[Union[str, TensorType]] = None, data_format: Optional[ChannelDimension] = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs):
images = make_list_of_images(images)
all_images = []
image_sizes = []
for image in images:
ori_w, ori_h = image.size
image_sizes.append([ori_h, ori_w])
resized_image = resize_multiple_of(image, self.patch_size, max_size=self.size)
resized_w, resized_h = resized_image.size
transform_img = _transform(resized_h, resized_w, self.image_mean, self.image_std)(resized_image)
all_images.append(to_numpy_array(transform_img))
images = [
as_tensor(to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format))
for image in all_images
]
# data = {"pixel_values": images, "image_sizes": as_tensor(image_sizes)}
# return data
data = {"pixel_values": images, "image_sizes": image_sizes}
#return BatchFeature(data=data, data_format=data_format, tensor_type=return_tensors)
return CustomBatchFeature(data=data, tensor_type=return_tensors)
def get_image_patches(
self,
data: Image,
image_grid_pinpoints,
):
if not isinstance(image_grid_pinpoints, list):
raise TypeError("grid_pinpoints must be a list of possible resolutions.")
best_resolution = select_best_resolution(data.size, image_grid_pinpoints)
resized_data, scale = keepratio_resize(data, best_resolution, return_scale=True)
resized_data = divide_to_patches(resized_data, self.size[0])
ori_data = data.resize(self.size, Image.BICUBIC)
data = [ori_data] + resized_data
return data
def pad(
self,
image: np.ndarray,
padding: Union[int, Tuple[int, int], Iterable[Tuple[int, int]]],
mode: PaddingMode = PaddingMode.CONSTANT,
constant_values: Union[float, Iterable[float]] = 0.0,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""
Pads the `image` with the specified `padding` and `mode`. Padding can be in the (`height`, `width`)
dimension of in the (`num_patches`) dimension. In the second case an iterable if tuples is expected
as input.
Args:
image (`np.ndarray`):
The image to pad.
padding (`int` or `Tuple[int, int]` or `Iterable[Tuple[int, int]]`):
Padding to apply to the edges of the height, width axes. Can be one of three formats:
- `((before_height, after_height), (before_width, after_width))` unique pad widths for each axis.
- `((before, after),)` yields same before and after pad for height and width.
- `(pad,)` or int is a shortcut for before = after = pad width for all axes.
mode (`PaddingMode`):
The padding mode to use. Can be one of:
- `"constant"`: pads with a constant value.
- `"reflect"`: pads with the reflection of the vector mirrored on the first and last values of the
vector along each axis.
- `"replicate"`: pads with the replication of the last value on the edge of the array along each axis.
- `"symmetric"`: pads with the reflection of the vector mirrored along the edge of the array.
constant_values (`float` or `Iterable[float]`, *optional*):
The value to use for the padding if `mode` is `"constant"`.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
If unset, will use same as the input image.
input_data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
If unset, will use the inferred format of the input image.
Returns:
`np.ndarray`: The padded image.
"""
# call the general `pad` if padding on `height/width`, otherwise it's the `num_patched` dim
if isinstance(padding, int) or len(padding) != 4:
return pad(image, padding, mode, constant_values, data_format, input_data_format)
if input_data_format is None:
input_data_format = infer_channel_dimension_format(image)
if mode == PaddingMode.CONSTANT:
image = np.pad(image, padding, mode="constant", constant_values=constant_values)
elif mode == PaddingMode.REFLECT:
image = np.pad(image, padding, mode="reflect")
elif mode == PaddingMode.REPLICATE:
image = np.pad(image, padding, mode="edge")
elif mode == PaddingMode.SYMMETRIC:
image = np.pad(image, padding, mode="symmetric")
else:
raise ValueError(f"Invalid padding mode: {mode}")
image = (
to_channel_dimension_format(image, data_format, input_data_format) if data_format is not None else image
)
return image
def _pad_for_batching(
self,
pixel_values: List[np.ndarray],
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
):
"""
Pads images on the `num_of_patches` dimension with zeros to form a batch of same number of patches.
Args:
pixel_values (`List[np.ndarray]`):
An array of pixel values of each images of shape (`batch_size`, `num_patches`, `image_in_3D`)
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
If unset, will use same as the input image.
input_data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
If unset, will use the inferred format of the input image.
Returns:
List[`np.ndarray`]: The padded images.
"""
max_patch = max(len(x) for x in pixel_values)
pixel_values = [
self.pad(
image,
padding=((0, max_patch - image.shape[0]), (0, 0), (0, 0), (0, 0)),
data_format=data_format,
input_data_format=input_data_format,
)
for image in pixel_values
]
return pixel_values
def anyres_for_vllm_preprocess(self, images, return_tensors: Optional[Union[str, TensorType]] = None, data_format: Optional[ChannelDimension] = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, do_pad: Optional[bool] = None, **kwargs):
images = make_list_of_images(images)
new_images = []
image_sizes = []
for image in images:
ori_w, ori_h = image.size
image_sizes.append([ori_h, ori_w])
image_patches = self.get_image_patches(
image,
self.image_grid_pinpoints
)
all_images = []
for image in image_patches:
transform_img = _transform(self.size[0], self.size[1], self.image_mean, self.image_std)(image)
img_array = to_numpy_array(transform_img)
img_array = to_channel_dimension_format(img_array, data_format, input_channel_dim=input_data_format)
all_images.append(img_array)
#new_images.append(img_array)
pixel_values = np.array(all_images)
new_images.append(pixel_values)
new_images = self._pad_for_batching(new_images)
data = {"pixel_values": new_images, "image_sizes": image_sizes}
return BatchFeature(data=data, tensor_type=return_tensors)
def anyres_preprocess(self, images, return_tensors: Optional[Union[str, TensorType]] = None, data_format: Optional[ChannelDimension] = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, do_pad: Optional[bool] = None, **kwargs):
images = make_list_of_images(images)
new_images = []
image_sizes = []
for image in images:
ori_w, ori_h = image.size
image_sizes.append([ori_h, ori_w])
image_patches = self.get_image_patches(
image,
self.image_grid_pinpoints
)
#all_images = []
for image in image_patches:
transform_img = _transform(self.size[0], self.size[1], self.image_mean, self.image_std)(image)
img_array = to_numpy_array(transform_img)
img_array = to_channel_dimension_format(img_array, data_format, input_channel_dim=input_data_format)
#all_images.append(img_array)
new_images.append(img_array)
#pixel_values = np.array(all_images)
#new_images.append(pixel_values)
# if do_pad:
# new_images = self._pad_for_batching(new_images)
data = {"pixel_values": new_images, "image_sizes": image_sizes}
return CustomBatchFeature(data=data, tensor_type=return_tensors)