MiniMax-VL-01 / configuration_minimax_vl_01.py
MiniMax-AI's picture
Initial Commit
cfde609
raw
history blame
5.72 kB
"""MiniMaxVL01 model configuration"""
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
from transformers.models.auto import CONFIG_MAPPING, AutoConfig
from .configuration_minimax_text_01 import MiniMaxText01Config
class MiniMaxVL01Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`MiniMaxVL01ForConditionalGeneration`]. It is used to instantiate an
MiniMaxVL01 model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the MiniMaxVL01.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vision_config (`Union[AutoConfig, dict]`, *optional*, defaults to `CLIPVisionConfig`):
The config object or dictionary of the vision backbone.
text_config (`Union[AutoConfig, dict]`, *optional*, defaults to `MiniMaxText01Config`):
The config object or dictionary of the text backbone.
ignore_index (`int`, *optional*, defaults to -100):
The ignore index for the loss function.
image_token_index (`int`, *optional*, defaults to 32000):
The image token index to encode the image prompt.
projector_hidden_act (`str`, *optional*, defaults to `"gelu"`):
The activation function used by the multimodal projector.
vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`):
The feature selection strategy used to select the vision feature from the vision backbone.
Can be one of `"default"` or `"full"`. If `"default"`, the CLS token is removed from the vision features.
If `"full"`, the full vision features are used.
vision_feature_layer (`int`, *optional*, defaults to -2):
The index of the layer to select the vision feature.
image_grid_pinpoints (`List`, *optional*, defaults to `[[336, 672], [672, 336], [672, 672], [1008, 336], [336, 1008]]`):
A list of possible resolutions to use for processing high resolution images. Each item in the list should be a tuple or list
of the form `(height, width)`.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether the model's input and output word embeddings should be tied.
image_seq_length (`int`, *optional*, defaults to 576):
Sequence length of one image embedding.
Example:
```python
>>> from transformers import MiniMaxVL01ForConditionalGeneration, MiniMaxVL01Config, CLIPVisionConfig, MiniMaxText01Config
>>> # Initializing a CLIP-vision config
>>> vision_config = CLIPVisionConfig()
>>> # Initializing a MiniMaxText01 config
>>> text_config = MiniMaxText01Config()
>>> # Initializing a MiniMaxVL01 style configuration
>>> configuration = MiniMaxVL01Config(vision_config, text_config)
>>> # Initializing a model from the MiniMaxVL01 style configuration
>>> model = MiniMaxVL01ForConditionalGeneration(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "minimax_vl_01"
def __init__(
self,
vision_config=None,
text_config=None,
ignore_index=-100,
image_token_index=32000,
projector_hidden_act="gelu",
vision_feature_select_strategy="default",
vision_feature_layer=-2,
image_grid_pinpoints=None,
tie_word_embeddings=False,
image_seq_length=576,
**kwargs,
):
self.ignore_index = ignore_index
self.image_token_index = image_token_index
self.projector_hidden_act = projector_hidden_act
self.image_seq_length = image_seq_length
if vision_feature_select_strategy not in ["default", "full"]:
raise ValueError(
"vision_feature_select_strategy should be one of 'default', 'full'."
f"Got: {vision_feature_select_strategy}"
)
self.vision_feature_select_strategy = vision_feature_select_strategy
self.vision_feature_layer = vision_feature_layer
image_grid_pinpoints = (
image_grid_pinpoints
if image_grid_pinpoints is not None
else [[336, 672], [672, 336], [672, 672], [1008, 336], [336, 1008]]
)
self.image_grid_pinpoints = image_grid_pinpoints
if isinstance(vision_config, dict):
vision_config["model_type"] = (
vision_config["model_type"] if "model_type" in vision_config else "clip_vision_model"
)
vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config)
elif vision_config is None:
vision_config = CONFIG_MAPPING["clip_vision_model"](
intermediate_size=4096,
hidden_size=1024,
patch_size=14,
image_size=336,
num_hidden_layers=24,
num_attention_heads=16,
vocab_size=32000,
projection_dim=768,
)
self.vision_config = vision_config
if text_config is not None:
assert "model_type" in text_config, "text_config model_type is not specified"
text_config = MiniMaxText01Config(**text_config)
else:
text_config = MiniMaxText01Config()
self.text_config = text_config
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)