MiniMax-Text-01

Homepage Hugging Face
Chat API
License
# MiniMax-VL-01 ## 1. Introduction We are delighted to introduce our **MiniMax-VL-01** model. It adopts the “ViT-MLP-LLM” framework, which is a commonly used technique in the field of multimodal large language models. The model is initialized and trained with three key parts: a 303-million-parameter Vision Transformer (ViT) for visual encoding, a randomly initialized two-layer MLP projector for image adaptation, and the MiniMax-Text-01 as the base LLM. MiniMax-VL-01 has a notable dynamic resolution feature. Input images are resized per a pre-set grid, with resolutions from 336×336 to 2016×2016, keeping a 336×336 thumbnail. The resized images are split into non-overlapping patches of the same size. These patches and the thumbnail are encoded separately and then combined for a full image representation. The training data for MiniMax-VL-01 consists of caption, description, and instruction data. The Vision Transformer (ViT) is trained on 694 million image-caption pairs from scratch. Across four distinct stages of the training pipeline, a total of 512 billion tokens are processed, leveraging this vast amount of data to endow the model with strong capabilities. Finally, MiniMax-VL-01 has reached top-level performance on multimodal leaderboards, demonstrating its edge and dependability in complex multimodal tasks.

## 2. Evaluation | Tasks | GPT-4o
(11-20) | Claude-3.5-Sonnet (10-22) | Gemini-1.5-Pro (002) | Gemini-2.0-Flash (exp) | Qwen2-VL-72B-Inst. | InternVL2.5-78B | LLama-3.2-90B | MiniMax-VL-01 | | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | | **Knowledge** | | | | | | | | | | MMMU* | 63.5 | **72.0** | 68.4 | 70.6 | 64.5 | 66.5 | 62.1 | 68.5 | | MMMU-Pro* | 54.5 | 54.7 | 50.9 | **57.0** | 43.2 | 47.3 | 36.0 | 52.7 | | **Visual Q&A** | | | | | | | | | | ChartQA*relaxed | 88.1 | 90.8 | 88.7 | 88.3 | 91.2 | 91.5 | 85.5 | **91.7** | | DocVQA* | 91.1 | 94.2 | 91.5 | 92.9 | **97.1** | 96.1 | 90.1 | 96.4 | | OCRBench | 806 | 790 | 800 | 846 | 856 | 847 | 805 | **865** | | **Mathematics & Sciences** || | | | | | | | | AI2D* | 83.1 | 82.0 | 80.9 | 85.1 | 84.4 | **86.8** | 78.9 | 83.3 | | MathVista* | 62.1 | 65.4 | 70.6 | **73.1** | 69.6 | 68.4 | 57.3 | 68.6 | | OlympiadBenchfull | 25.2 | 28.4 | 32.1 | **46.1** | 21.9 | 25.1 | 19.3 | 24.2 | |**Long Context**||||| |M-LongDocacc| **41.4** | 31.4 | 26.2 | 31.4 | 11.6 | 19.7 | 13.9 | 32.5 | |**Comprehensive**||||| |MEGA-Benchmacro | 49.4 | 51.4 | 45.9 | **53.9** | 46.8 | 45.3 | 19.9 | 47.4 | |**User Experience**||||| |In-house Benchmark | 62.3 | 47.0 | 49.2 | **72.1** | 40.6 | 34.8 | 13.6 | 56.6 | * Evaluated following a _0-shot CoT_ setting. ## 3. Quickstart Here we provide a simple example of loading the tokenizer and model to generate content. ```python from transformers import AutoModelForCausalLM, AutoProcessor, AutoConfig, QuantoConfig, GenerationConfig import torch import json import os from PIL import Image # load hf config hf_config = AutoConfig.from_pretrained("MiniMax-VL-01", trust_remote_code=True) # quantization config, int8 is recommended quantization_config = QuantoConfig( weights="int8", modules_to_not_convert=[ "vision_tower", "image_newline", "multi_modal_projector", "lm_head", "embed_tokens", ] + [f"model.layers.{i}.coefficient" for i in range(hf_config.text_config.num_hidden_layers)] + [f"model.layers.{i}.block_sparse_moe.gate" for i in range(hf_config.text_config.num_hidden_layers)] ) # set device map model_safetensors_index_path = os.path.join("MiniMax-VL-01", "model.safetensors.index.json") with open(model_safetensors_index_path, "r") as f: model_safetensors_index = json.load(f) weight_map = model_safetensors_index['weight_map'] vision_map = {} for key, value in weight_map.items(): if 'vision_tower' in key or 'image_newline' in key or 'multi_modal_projector' in key: new_key = key.replace('.weight','').replace('.bias','') if new_key not in vision_map: vision_map[new_key] = value # assume 8 GPUs world_size = 8 device_map = { 'language_model.model.embed_tokens': 'cuda:0', 'language_model.model.norm': f'cuda:{world_size - 1}', 'language_model.lm_head': f'cuda:{world_size - 1}' } for key, value in vision_map.items(): device_map[key] = f'cuda:0' device_map['vision_tower.vision_model.post_layernorm'] = f'cuda:0' layers_per_device = hf_config.text_config.num_hidden_layers // world_size for i in range(world_size): for j in range(layers_per_device): device_map[f'language_model.model.layers.{i * layers_per_device + j}'] = f'cuda:{i}' # load processor processor = AutoProcessor.from_pretrained("MiniMax-VL-01", trust_remote_code=True) messages = [ {"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant created by MiniMax based on MiniMax-VL-01 model."}]}, {"role": "user", "content": [{"type": "image", "image": "placeholder"},{"type": "text", "text": "Describe this image."}]}, ] prompt = processor.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) raw_image = Image.open("figures/image.jpg") # tokenize and move to device model_inputs = processor(images=[raw_image], text=prompt, return_tensors='pt').to('cuda').to(torch.bfloat16) # load bfloat16 model, move to device, and apply quantization quantized_model = AutoModelForCausalLM.from_pretrained( "MiniMax-VL-01", torch_dtype="bfloat16", device_map=device_map, quantization_config=quantization_config, trust_remote_code=True, offload_buffers=True, ) generation_config = GenerationConfig( max_new_tokens=100, eos_token_id=200020, use_cache=True, ) # generate response generated_ids = quantized_model.generate(**model_inputs, generation_config=generation_config) print(f"generated_ids: {generated_ids}") generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = processor.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` ## 4. Chatbot & API For general use and evaluation, we provide a [Chatbot](https://www.hailuo.ai/) with online search capabilities and the [online API](https://intl.minimaxi.com) for developers. Contact us at [model@minimaxi.com](mailto:model@minimaxi.com).