Mithul commited on
Commit
3706c81
1 Parent(s): a6d66c3

Initial commit

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
- value: -3.68 +/- 1.12
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: -2.34 +/- 0.70
20
  name: mean_reward
21
  verified: false
22
  ---
a2c-PandaReachDense-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e06a2335f9229ea0144c01f64ca5e425d4a9b3b813192a152941330cf0caa222
3
- size 108011
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:12caf706679346d0c61f20779a231caddbdbdce095984d2ad8ea7f6d81c30d4c
3
+ size 108166
a2c-PandaReachDense-v2/_stable_baselines3_version CHANGED
@@ -1 +1 @@
1
- 1.7.0
 
1
+ 1.8.0
a2c-PandaReachDense-v2/data CHANGED
@@ -4,9 +4,9 @@
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f133daac4c0>",
8
  "__abstractmethods__": "frozenset()",
9
- "_abc_impl": "<_abc_data object at 0x7f133daa3de0>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
@@ -19,46 +19,24 @@
19
  "weight_decay": 0
20
  }
21
  },
22
- "observation_space": {
23
- ":type:": "<class 'gym.spaces.dict.Dict'>",
24
- ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
- "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
- "_shape": null,
27
- "dtype": null,
28
- "_np_random": null
29
- },
30
- "action_space": {
31
- ":type:": "<class 'gym.spaces.box.Box'>",
32
- ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
- "dtype": "float32",
34
- "_shape": [
35
- 3
36
- ],
37
- "low": "[-1. -1. -1.]",
38
- "high": "[1. 1. 1.]",
39
- "bounded_below": "[ True True True]",
40
- "bounded_above": "[ True True True]",
41
- "_np_random": null
42
- },
43
- "n_envs": 4,
44
  "num_timesteps": 1000000,
45
  "_total_timesteps": 1000000,
46
  "_num_timesteps_at_start": 0,
47
  "seed": null,
48
  "action_noise": null,
49
- "start_time": 1677409948759868690,
50
  "learning_rate": 0.0007,
51
  "tensorboard_log": null,
52
  "lr_schedule": {
53
  ":type:": "<class 'function'>",
54
- ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
  },
56
  "_last_obs": {
57
  ":type:": "<class 'collections.OrderedDict'>",
58
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAeCnPPkS6DD1z5xg/eCnPPkS6DD1z5xg/eCnPPkS6DD1z5xg/eCnPPkS6DD1z5xg/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAYgovP22dkz8w18q+bvhdPzgCzj8y9Im9S15BP+pOnD9py82+gMe7PvcAvb3rPi6/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB4Kc8+RLoMPXPnGD9JtIC7VZSdOhGKpDx4Kc8+RLoMPXPnGD9JtIC7VZSdOhGKpDx4Kc8+RLoMPXPnGD9JtIC7VZSdOhGKpDx4Kc8+RLoMPXPnGD9JtIC7VZSdOhGKpDyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
- "achieved_goal": "[[0.40461326 0.03435732 0.59728163]\n [0.40461326 0.03435732 0.59728163]\n [0.40461326 0.03435732 0.59728163]\n [0.40461326 0.03435732 0.59728163]]",
60
- "desired_goal": "[[ 0.6837522 1.1532418 -0.396173 ]\n [ 0.867072 1.6094427 -0.0673603 ]\n [ 0.75534505 1.2211583 -0.40194252]\n [ 0.36675644 -0.092287 -0.68064755]]",
61
- "observation": "[[ 0.40461326 0.03435732 0.59728163 -0.00392774 0.00120224 0.02008537]\n [ 0.40461326 0.03435732 0.59728163 -0.00392774 0.00120224 0.02008537]\n [ 0.40461326 0.03435732 0.59728163 -0.00392774 0.00120224 0.02008537]\n [ 0.40461326 0.03435732 0.59728163 -0.00392774 0.00120224 0.02008537]]"
62
  },
63
  "_last_episode_starts": {
64
  ":type:": "<class 'numpy.ndarray'>",
@@ -66,18 +44,19 @@
66
  },
67
  "_last_original_obs": {
68
  ":type:": "<class 'collections.OrderedDict'>",
69
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAzaZWPbJ47j0R6hY+S1aGPRTf5b0keB49MNCVPZ+00D1c5QU+gTmqPWG9tDwo6ZM+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
- "desired_goal": "[[ 0.05240517 0.11644115 0.14737727]\n [ 0.06559428 -0.11224189 0.03868879]\n [ 0.07315099 0.10190701 0.13075775]\n [ 0.08311749 0.02206296 0.28888822]]",
72
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
  },
74
  "_episode_num": 0,
75
  "use_sde": false,
76
  "sde_sample_freq": -1,
77
  "_current_progress_remaining": 0.0,
 
78
  "ep_info_buffer": {
79
  ":type:": "<class 'collections.deque'>",
80
- ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIqHLaU3KuCsCUhpRSlIwBbJRLMowBdJRHQKbheloDgZV1fZQoaAZoCWgPQwgLmMCtu9kHwJSGlFKUaBVLMmgWR0Cm4SPGQ0XQdX2UKGgGaAloD0MIZmmn5nKDA8CUhpRSlGgVSzJoFkdApuDJWV/tpnV9lChoBmgJaA9DCA2MvKyJxQjAlIaUUpRoFUsyaBZHQKbgcKUmlZZ1fZQoaAZoCWgPQwiw5CoWvykIwJSGlFKUaBVLMmgWR0Cm4zqoQ4CIdX2UKGgGaAloD0MIv9L58CzxEcCUhpRSlGgVSzJoFkdApuLkVWS2Y3V9lChoBmgJaA9DCBq/8EqS5wnAlIaUUpRoFUsyaBZHQKbiikpI+W51fZQoaAZoCWgPQwhoBYasbhUGwJSGlFKUaBVLMmgWR0Cm4jGYrrgPdX2UKGgGaAloD0MIVz82yY/YCsCUhpRSlGgVSzJoFkdApuSXTPSlWXV9lChoBmgJaA9DCE+w/zo3bQXAlIaUUpRoFUsyaBZHQKbkP+AmReV1fZQoaAZoCWgPQwiNJ4I4DycKwJSGlFKUaBVLMmgWR0Cm4+RUWEbpdX2UKGgGaAloD0MIFjPC24NQCcCUhpRSlGgVSzJoFkdApuOLCm/Fi3V9lChoBmgJaA9DCEn0Morl9gLAlIaUUpRoFUsyaBZHQKbloDSw4bV1fZQoaAZoCWgPQwi6u86G/AMSwJSGlFKUaBVLMmgWR0Cm5UiD/VAidX2UKGgGaAloD0MIHERrRZujDMCUhpRSlGgVSzJoFkdApuTtRYRuj3V9lChoBmgJaA9DCLCNeLKbORbAlIaUUpRoFUsyaBZHQKbklCKJl8R1fZQoaAZoCWgPQwj76T9rfqwUwJSGlFKUaBVLMmgWR0Cm5rJkf9xZdX2UKGgGaAloD0MI4zYawFsAC8CUhpRSlGgVSzJoFkdApuZa3ocJdHV9lChoBmgJaA9DCA38qIb9Pg7AlIaUUpRoFUsyaBZHQKbl/2exwAF1fZQoaAZoCWgPQwhMw/ARMWUHwJSGlFKUaBVLMmgWR0Cm5aZBsyi3dX2UKGgGaAloD0MIMUPjiSDuAcCUhpRSlGgVSzJoFkdApufUMCtA9nV9lChoBmgJaA9DCN/7G7RXXx3AlIaUUpRoFUsyaBZHQKbnfK28Zk11fZQoaAZoCWgPQwhxWBr4Uc0HwJSGlFKUaBVLMmgWR0Cm5yGNJe3QdX2UKGgGaAloD0MIURa+vtbVGMCUhpRSlGgVSzJoFkdApubIokRjBnV9lChoBmgJaA9DCJmAXyNJkATAlIaUUpRoFUsyaBZHQKbo2yP+4sp1fZQoaAZoCWgPQwjLgLOULEcJwJSGlFKUaBVLMmgWR0Cm6IOUdJardX2UKGgGaAloD0MI8nhafuAKGMCUhpRSlGgVSzJoFkdApugoNqgyunV9lChoBmgJaA9DCGVR2EXRIwDAlIaUUpRoFUsyaBZHQKbnzy7wrlN1fZQoaAZoCWgPQwi/u5UlOqsPwJSGlFKUaBVLMmgWR0Cm6etSqEOBdX2UKGgGaAloD0MIM/lmmxtzB8CUhpRSlGgVSzJoFkdApumTy4FzMnV9lChoBmgJaA9DCFTkEHFzGhDAlIaUUpRoFUsyaBZHQKbpOIJqqOt1fZQoaAZoCWgPQwii0LLuH6sNwJSGlFKUaBVLMmgWR0Cm6N9bgTAWdX2UKGgGaAloD0MIfjhIiPJlCMCUhpRSlGgVSzJoFkdApusAdhiLEXV9lChoBmgJaA9DCNfZkH9msArAlIaUUpRoFUsyaBZHQKbqqOOKfnR1fZQoaAZoCWgPQwiDFadaCwMdwJSGlFKUaBVLMmgWR0Cm6k2U8mrsdX2UKGgGaAloD0MIT6xT5XvmBsCUhpRSlGgVSzJoFkdApun1CRfWtnV9lChoBmgJaA9DCHEceLXcORTAlIaUUpRoFUsyaBZHQKbsCIPbwjN1fZQoaAZoCWgPQwiyZmSQuwj/v5SGlFKUaBVLMmgWR0Cm67E1uR9xdX2UKGgGaAloD0MIprbUQV6vAcCUhpRSlGgVSzJoFkdAputVxsEaEXV9lChoBmgJaA9DCK+w4H7AgwnAlIaUUpRoFUsyaBZHQKbq/IBikO91fZQoaAZoCWgPQwgTRUjdzh4IwJSGlFKUaBVLMmgWR0Cm7RrFGXoldX2UKGgGaAloD0MIiXlW0oqvAMCUhpRSlGgVSzJoFkdApuzDCcf/3nV9lChoBmgJaA9DCGechqjCnwvAlIaUUpRoFUsyaBZHQKbsZ6/IsAh1fZQoaAZoCWgPQwjyfXGpSrsLwJSGlFKUaBVLMmgWR0Cm7A6aTfSAdX2UKGgGaAloD0MI7nppigAHAMCUhpRSlGgVSzJoFkdApu4ksH0K7nV9lChoBmgJaA9DCA+3Q8NilA/AlIaUUpRoFUsyaBZHQKbtzSYPXkJ1fZQoaAZoCWgPQwim0eRiDEwFwJSGlFKUaBVLMmgWR0Cm7XKpLmITdX2UKGgGaAloD0MIrwrUYvAwCMCUhpRSlGgVSzJoFkdApu0ZnnMdLnV9lChoBmgJaA9DCGPQCaGDzgTAlIaUUpRoFUsyaBZHQKbvMcEvCdl1fZQoaAZoCWgPQwhb7swEw5kYwJSGlFKUaBVLMmgWR0Cm7tpLmITHdX2UKGgGaAloD0MIy4XKv5aXBcCUhpRSlGgVSzJoFkdApu5+5Yoy9HV9lChoBmgJaA9DCGnJ42n5IQ7AlIaUUpRoFUsyaBZHQKbuJdcjZ+R1fZQoaAZoCWgPQwg41zBD40kGwJSGlFKUaBVLMmgWR0Cm8DTlkpZwdX2UKGgGaAloD0MI2xX6YBkrEsCUhpRSlGgVSzJoFkdApu/dZ3cHnnV9lChoBmgJaA9DCBSTN8DMlwfAlIaUUpRoFUsyaBZHQKbvgjfNzKd1fZQoaAZoCWgPQwjsFRbcDxgIwJSGlFKUaBVLMmgWR0Cm7ykGJN0vdX2UKGgGaAloD0MIfCqnPSWHDcCUhpRSlGgVSzJoFkdApvE2ys0YTHV9lChoBmgJaA9DCB5uh4bFaAfAlIaUUpRoFUsyaBZHQKbw33rUsnR1fZQoaAZoCWgPQwivQspPqp0UwJSGlFKUaBVLMmgWR0Cm8IQ7cO9WdX2UKGgGaAloD0MIllmEYiuIEcCUhpRSlGgVSzJoFkdApvArH4oJA3V9lChoBmgJaA9DCEgyq3e4/Q3AlIaUUpRoFUsyaBZHQKbyQPzWf9R1fZQoaAZoCWgPQwhXCRaHMz8PwJSGlFKUaBVLMmgWR0Cm8emc4HX3dX2UKGgGaAloD0MIYr8n1qkiFMCUhpRSlGgVSzJoFkdApvGOaQV9GHV9lChoBmgJaA9DCM1YNJ2djATAlIaUUpRoFUsyaBZHQKbxNUvwmVt1fZQoaAZoCWgPQwirPeyFAtYHwJSGlFKUaBVLMmgWR0Cm80kl3QlbdX2UKGgGaAloD0MI2SYVjbXfDcCUhpRSlGgVSzJoFkdApvLxpeu3dHV9lChoBmgJaA9DCMlaQ6m9+BHAlIaUUpRoFUsyaBZHQKbyljEvTPV1fZQoaAZoCWgPQwgsuvWaHjQLwJSGlFKUaBVLMmgWR0Cm8j0Xxe9jdX2UKGgGaAloD0MIG2ZoPBGkDMCUhpRSlGgVSzJoFkdApvRPCQ9zO3V9lChoBmgJaA9DCCcxCKwcOhLAlIaUUpRoFUsyaBZHQKbz93ztkWh1fZQoaAZoCWgPQwhpVyHlJ7UEwJSGlFKUaBVLMmgWR0Cm85wRXfZVdX2UKGgGaAloD0MIPWAeMuVDC8CUhpRSlGgVSzJoFkdApvNC3kPtlnV9lChoBmgJaA9DCKp+pfPhGQrAlIaUUpRoFUsyaBZHQKb1V6dlNDd1fZQoaAZoCWgPQwjYRGYucJkOwJSGlFKUaBVLMmgWR0Cm9QAmAskIdX2UKGgGaAloD0MIXMmOjUDcCsCUhpRSlGgVSzJoFkdApvSk7+1jRXV9lChoBmgJaA9DCAg57//jBAfAlIaUUpRoFUsyaBZHQKb0S+XZ5A11fZQoaAZoCWgPQwiyYrg6ACIIwJSGlFKUaBVLMmgWR0Cm9ljFqBVddX2UKGgGaAloD0MIM6mhDcDmA8CUhpRSlGgVSzJoFkdApvYBQHiWFHV9lChoBmgJaA9DCMPxfAbU+xTAlIaUUpRoFUsyaBZHQKb1pbs4T9N1fZQoaAZoCWgPQwhzaJHtfF8JwJSGlFKUaBVLMmgWR0Cm9Uyp71IzdX2UKGgGaAloD0MIeJeL+E7MBsCUhpRSlGgVSzJoFkdApvd7J8v25HV9lChoBmgJaA9DCMCy0qQUpBLAlIaUUpRoFUsyaBZHQKb3I8lHBk91fZQoaAZoCWgPQwhjJlEv+MQRwJSGlFKUaBVLMmgWR0Cm9si1y/9HdX2UKGgGaAloD0MIp5at9UXiBcCUhpRSlGgVSzJoFkdApvZvvBrN4nV9lChoBmgJaA9DCELr4ctEQRXAlIaUUpRoFUsyaBZHQKb43I4lyBF1fZQoaAZoCWgPQwgvFRvzOvIXwJSGlFKUaBVLMmgWR0Cm+IWqT8pDdX2UKGgGaAloD0MIigPo9/37EcCUhpRSlGgVSzJoFkdApvgqwD/2kHV9lChoBmgJaA9DCODYs+cytQTAlIaUUpRoFUsyaBZHQKb30c0+C9R1fZQoaAZoCWgPQwhWuOUjKekNwJSGlFKUaBVLMmgWR0Cm+ndb5dnkdX2UKGgGaAloD0MIMGXggJbOCcCUhpRSlGgVSzJoFkdApvogJgLJCHV9lChoBmgJaA9DCJ3zUxwHng/AlIaUUpRoFUsyaBZHQKb5xXNke6t1fZQoaAZoCWgPQwgycasgBhoNwJSGlFKUaBVLMmgWR0Cm+W0/W1+idX2UKGgGaAloD0MIAd4CCYofBMCUhpRSlGgVSzJoFkdApvwnqZ+hG3V9lChoBmgJaA9DCPg3aK8+HgjAlIaUUpRoFUsyaBZHQKb70FQEZBN1fZQoaAZoCWgPQwjFILByaDESwJSGlFKUaBVLMmgWR0Cm+3XBxgiNdX2UKGgGaAloD0MIiXrBpzn5C8CUhpRSlGgVSzJoFkdApvsdTcZccHV9lChoBmgJaA9DCGnGounspAXAlIaUUpRoFUsyaBZHQKb+CuRLbpN1fZQoaAZoCWgPQwiphZLJqf0KwJSGlFKUaBVLMmgWR0Cm/bQ0GeMAdX2UKGgGaAloD0MI7bYLzXV6DcCUhpRSlGgVSzJoFkdApv1ZvvSc9XV9lChoBmgJaA9DCMl3KXXJ+AHAlIaUUpRoFUsyaBZHQKb9AY2sJY11ZS4="
81
  },
82
  "ep_success_buffer": {
83
  ":type:": "<class 'collections.deque'>",
@@ -90,5 +69,27 @@
90
  "ent_coef": 0.0,
91
  "vf_coef": 0.5,
92
  "max_grad_norm": 0.5,
93
- "normalize_advantage": false
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94
  }
 
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f506afef280>",
8
  "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f506afee4c0>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
 
19
  "weight_decay": 0
20
  }
21
  },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
  "num_timesteps": 1000000,
23
  "_total_timesteps": 1000000,
24
  "_num_timesteps_at_start": 0,
25
  "seed": null,
26
  "action_noise": null,
27
+ "start_time": 1681676258815908844,
28
  "learning_rate": 0.0007,
29
  "tensorboard_log": null,
30
  "lr_schedule": {
31
  ":type:": "<class 'function'>",
32
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
33
  },
34
  "_last_obs": {
35
  ":type:": "<class 'collections.OrderedDict'>",
36
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAQh25PrdWYb2UINM+Qh25PrdWYb2UINM+Qh25PrdWYb2UINM+Qh25PrdWYb2UINM+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAncvAvz8ymb5Ft42+nHqQv23i2L8cG4G+kyYiPs5Ps7/gyzW/4sP6Pjac477mr2S+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABCHbk+t1ZhvZQg0z7jZlw8tw8AvELpgTdCHbk+t1ZhvZQg0z7jZlw8tw8AvELpgTdCHbk+t1ZhvZQg0z7jZlw8tw8AvELpgTdCHbk+t1ZhvZQg0z7jZlw8tw8AvELpgTeUaA5LBEsGhpRoEnSUUpR1Lg==",
37
+ "achieved_goal": "[[ 0.36155134 -0.05501434 0.41235793]\n [ 0.36155134 -0.05501434 0.41235793]\n [ 0.36155134 -0.05501434 0.41235793]\n [ 0.36155134 -0.05501434 0.41235793]]",
38
+ "desired_goal": "[[-1.5062138 -0.29921147 -0.27678886]\n [-1.1287417 -1.69441 -0.25215995]\n [ 0.15835027 -1.400873 -0.71014214]\n [ 0.48977572 -0.44455117 -0.22332725]]",
39
+ "observation": "[[ 3.61551344e-01 -5.50143383e-02 4.12357926e-01 1.34522645e-02\n -7.81624671e-03 1.54866175e-05]\n [ 3.61551344e-01 -5.50143383e-02 4.12357926e-01 1.34522645e-02\n -7.81624671e-03 1.54866175e-05]\n [ 3.61551344e-01 -5.50143383e-02 4.12357926e-01 1.34522645e-02\n -7.81624671e-03 1.54866175e-05]\n [ 3.61551344e-01 -5.50143383e-02 4.12357926e-01 1.34522645e-02\n -7.81624671e-03 1.54866175e-05]]"
40
  },
41
  "_last_episode_starts": {
42
  ":type:": "<class 'numpy.ndarray'>",
 
44
  },
45
  "_last_original_obs": {
46
  ":type:": "<class 'collections.OrderedDict'>",
47
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAjUubPGR0hr35GEA+g79hPWJBv7386pE+33ZQvQ6CwLzpnIg9CY4DvhDXQ709bmQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
48
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
49
+ "desired_goal": "[[ 0.01895692 -0.06565168 0.18759526]\n [ 0.05511428 -0.09338643 0.2849959 ]\n [-0.05089461 -0.02349951 0.06670553]\n [-0.12847151 -0.04781252 0.22307678]]",
50
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
  },
52
  "_episode_num": 0,
53
  "use_sde": false,
54
  "sde_sample_freq": -1,
55
  "_current_progress_remaining": 0.0,
56
+ "_stats_window_size": 100,
57
  "ep_info_buffer": {
58
  ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIS7GjcajfAcCUhpRSlIwBbJRLMowBdJRHQKhNKW+oLoh1fZQoaAZoCWgPQwjk9zb92Y/hv5SGlFKUaBVLMmgWR0CoTOwAlv61dX2UKGgGaAloD0MI5/up8dLN87+UhpRSlGgVSzJoFkdAqEyuY+jdpXV9lChoBmgJaA9DCPBRf73CAuu/lIaUUpRoFUsyaBZHQKhMbcB2fTV1fZQoaAZoCWgPQwhiLxSwHYwAwJSGlFKUaBVLMmgWR0CoTlwS8J2MdX2UKGgGaAloD0MIUgslk1O7/7+UhpRSlGgVSzJoFkdAqE4fHLida3V9lChoBmgJaA9DCLDkKha/qf6/lIaUUpRoFUsyaBZHQKhN4ZXMhX91fZQoaAZoCWgPQwjQK556pMH0v5SGlFKUaBVLMmgWR0CoTaD8DSw4dX2UKGgGaAloD0MIluttMxVi+L+UhpRSlGgVSzJoFkdAqE+sINVinnV9lChoBmgJaA9DCBQhdTv76gfAlIaUUpRoFUsyaBZHQKhPbqwhW5p1fZQoaAZoCWgPQwiA12fO+lT2v5SGlFKUaBVLMmgWR0CoTzHcclw+dX2UKGgGaAloD0MISUvl7Qgn/b+UhpRSlGgVSzJoFkdAqE7xYDDCQHV9lChoBmgJaA9DCL4Ts14MpfG/lIaUUpRoFUsyaBZHQKhQxPTG5tp1fZQoaAZoCWgPQwgQkgVM4FYFwJSGlFKUaBVLMmgWR0CoUId38n/ldX2UKGgGaAloD0MIJUBNLVvr+b+UhpRSlGgVSzJoFkdAqFBJ13dKunV9lChoBmgJaA9DCMQKt3wkZf2/lIaUUpRoFUsyaBZHQKhQCVNYbKl1fZQoaAZoCWgPQwi0dtuF5rrpv5SGlFKUaBVLMmgWR0CoUd9PLxI8dX2UKGgGaAloD0MItp22RgSDAcCUhpRSlGgVSzJoFkdAqFGhyuIRAnV9lChoBmgJaA9DCK+zIf/MoATAlIaUUpRoFUsyaBZHQKhRZCuU2UB1fZQoaAZoCWgPQwil942vPTPxv5SGlFKUaBVLMmgWR0CoUSOK4x1xdX2UKGgGaAloD0MIu2JGeHuQ77+UhpRSlGgVSzJoFkdAqFL/q5byH3V9lChoBmgJaA9DCB8uOe6UzgnAlIaUUpRoFUsyaBZHQKhSwiUxEfF1fZQoaAZoCWgPQwjEBaBRurT8v5SGlFKUaBVLMmgWR0CoUoR/d69kdX2UKGgGaAloD0MIqn8QyZAj97+UhpRSlGgVSzJoFkdAqFJD5Kvmo3V9lChoBmgJaA9DCGB2Tx4W6uu/lIaUUpRoFUsyaBZHQKhUIIsyzol1fZQoaAZoCWgPQwiz0qQUdLvzv5SGlFKUaBVLMmgWR0CoU+LNwBHTdX2UKGgGaAloD0MIz04GR8kr9r+UhpRSlGgVSzJoFkdAqFOlNahYeXV9lChoBmgJaA9DCOpae5+qAgfAlIaUUpRoFUsyaBZHQKhTZK0UoKF1fZQoaAZoCWgPQwhh4/p3fUYHwJSGlFKUaBVLMmgWR0CoVTv4/NaAdX2UKGgGaAloD0MIu+8YHvvZ77+UhpRSlGgVSzJoFkdAqFT+d7OVxHV9lChoBmgJaA9DCLN9yFuu3gTAlIaUUpRoFUsyaBZHQKhUwNWEK3N1fZQoaAZoCWgPQwgroib6fBQAwJSGlFKUaBVLMmgWR0CoVIBIe5nUdX2UKGgGaAloD0MIlGjJ42lZAcCUhpRSlGgVSzJoFkdAqFZuRLbpNnV9lChoBmgJaA9DCNulDYelIQvAlIaUUpRoFUsyaBZHQKhWMKGcnVp1fZQoaAZoCWgPQwg3/686cmQAwJSGlFKUaBVLMmgWR0CoVfLgflp5dX2UKGgGaAloD0MIu7n4255g97+UhpRSlGgVSzJoFkdAqFWyFj/dZnV9lChoBmgJaA9DCFLuPsdHC/e/lIaUUpRoFUsyaBZHQKhXgx20Re11fZQoaAZoCWgPQwgyyF2EKaoHwJSGlFKUaBVLMmgWR0CoV0Wk8A7xdX2UKGgGaAloD0MIcJS8OsegAcCUhpRSlGgVSzJoFkdAqFcH003wTnV9lChoBmgJaA9DCNOFWP0RRvi/lIaUUpRoFUsyaBZHQKhWxzVc2R91fZQoaAZoCWgPQwhF2PD0Sln2v5SGlFKUaBVLMmgWR0CoWMbSZ0CBdX2UKGgGaAloD0MI0lRP5h/dC8CUhpRSlGgVSzJoFkdAqFiJbjcVQHV9lChoBmgJaA9DCBu4A3XKo/+/lIaUUpRoFUsyaBZHQKhYTLdvbXZ1fZQoaAZoCWgPQwhAvoQKDo8AwJSGlFKUaBVLMmgWR0CoWAwpON5udX2UKGgGaAloD0MIoE/kSdJVBsCUhpRSlGgVSzJoFkdAqFns1Q66rnV9lChoBmgJaA9DCBPXMa64+PO/lIaUUpRoFUsyaBZHQKhZr2/SH/N1fZQoaAZoCWgPQwgk7UYf84EJwJSGlFKUaBVLMmgWR0CoWXHo5ggHdX2UKGgGaAloD0MIvVZCd0ncAsCUhpRSlGgVSzJoFkdAqFkxeHBUJnV9lChoBmgJaA9DCLIOR1fpTgHAlIaUUpRoFUsyaBZHQKhbDteD3/R1fZQoaAZoCWgPQwjEz38PXrvjv5SGlFKUaBVLMmgWR0CoWtFijL0SdX2UKGgGaAloD0MIgA9eu7Sh8b+UhpRSlGgVSzJoFkdAqFqTp7kXDXV9lChoBmgJaA9DCCB8KNGShwPAlIaUUpRoFUsyaBZHQKhaUxbjcVR1fZQoaAZoCWgPQwhs7BLVW0P7v5SGlFKUaBVLMmgWR0CoXCLeyiVTdX2UKGgGaAloD0MI06QUdHsJ8L+UhpRSlGgVSzJoFkdAqFvliay8jHV9lChoBmgJaA9DCDqSy39IPwPAlIaUUpRoFUsyaBZHQKhbp9QXQ+l1fZQoaAZoCWgPQwinkZbK2xHtv5SGlFKUaBVLMmgWR0CoW2dH+ZPVdX2UKGgGaAloD0MIPdaMDHLXAcCUhpRSlGgVSzJoFkdAqF1EyWRigHV9lChoBmgJaA9DCO56aYoAp+K/lIaUUpRoFUsyaBZHQKhdBzq8lHB1fZQoaAZoCWgPQwjPh2cJMoL3v5SGlFKUaBVLMmgWR0CoXMmB4D9wdX2UKGgGaAloD0MIR+NQvws7AsCUhpRSlGgVSzJoFkdAqFyI4VARkHV9lChoBmgJaA9DCGzOwTOhSf6/lIaUUpRoFUsyaBZHQKhex02cawV1fZQoaAZoCWgPQwhH5/wUxwHzv5SGlFKUaBVLMmgWR0CoXoqkuYhMdX2UKGgGaAloD0MIj8TL07ki9L+UhpRSlGgVSzJoFkdAqF5N47ihnXV9lChoBmgJaA9DCD56w33klgDAlIaUUpRoFUsyaBZHQKheDiVB2Oh1fZQoaAZoCWgPQwjlCu9yEb8GwJSGlFKUaBVLMmgWR0CoYJnh86V/dX2UKGgGaAloD0MIuLHZkeo79b+UhpRSlGgVSzJoFkdAqGBdNnGsFXV9lChoBmgJaA9DCG1YU1kUdgLAlIaUUpRoFUsyaBZHQKhgIHIp6Qh1fZQoaAZoCWgPQwgAVkeOdAbwv5SGlFKUaBVLMmgWR0CoX+DjJdSmdX2UKGgGaAloD0MIPBVwz/Nn/7+UhpRSlGgVSzJoFkdAqGJ9Drqt5nV9lChoBmgJaA9DCG0Dd6BOmQLAlIaUUpRoFUsyaBZHQKhiQKpDNQl1fZQoaAZoCWgPQwglsaTcfQ70v5SGlFKUaBVLMmgWR0CoYgQhGH58dX2UKGgGaAloD0MIoQ+WsaHb/b+UhpRSlGgVSzJoFkdAqGHEg8r7O3V9lChoBmgJaA9DCDKwjuOHivu/lIaUUpRoFUsyaBZHQKhkYnOSntR1fZQoaAZoCWgPQwgxCoLHt7f8v5SGlFKUaBVLMmgWR0CoZCXirDIjdX2UKGgGaAloD0MIpmJjXkfc+7+UhpRSlGgVSzJoFkdAqGPpNoJzDHV9lChoBmgJaA9DCEs6ysFsQve/lIaUUpRoFUsyaBZHQKhjqWRigCh1fZQoaAZoCWgPQwiR7ucU5OcIwJSGlFKUaBVLMmgWR0CoZkTU7Sy/dX2UKGgGaAloD0MIzeodbofG9r+UhpRSlGgVSzJoFkdAqGYIVEd/8XV9lChoBmgJaA9DCD+PUZ55+fu/lIaUUpRoFUsyaBZHQKhly46wMYx1fZQoaAZoCWgPQwgOhGQBE7gNwJSGlFKUaBVLMmgWR0CoZYvq1PWQdX2UKGgGaAloD0MIKJtyhXe5B8CUhpRSlGgVSzJoFkdAqGgj8pCrtHV9lChoBmgJaA9DCBWoxeBhmvO/lIaUUpRoFUsyaBZHQKhn5oFFDv51fZQoaAZoCWgPQwj9+EuL+qT7v5SGlFKUaBVLMmgWR0CoZ6jiwSrYdX2UKGgGaAloD0MI+ir52F2g/r+UhpRSlGgVSzJoFkdAqGdoUSIxg3V9lChoBmgJaA9DCHFUbqKWpv2/lIaUUpRoFUsyaBZHQKhpRBQemvZ1fZQoaAZoCWgPQwiGONbFbXT2v5SGlFKUaBVLMmgWR0CoaQajvd/KdX2UKGgGaAloD0MI12g50EPt67+UhpRSlGgVSzJoFkdAqGjJGKAJ9nV9lChoBmgJaA9DCPvo1JXP8u2/lIaUUpRoFUsyaBZHQKhoiI1LrX11fZQoaAZoCWgPQwg/x0eLM0byv5SGlFKUaBVLMmgWR0Coamm0E5hjdX2UKGgGaAloD0MIKh+CqtFr/L+UhpRSlGgVSzJoFkdAqGosSVW0Z3V9lChoBmgJaA9DCGk2j8NgPvi/lIaUUpRoFUsyaBZHQKhp7ubZvk11fZQoaAZoCWgPQwgqVaLsLSX1v5SGlFKUaBVLMmgWR0Coaa6IFeOXdX2UKGgGaAloD0MI1QRR9wHI9b+UhpRSlGgVSzJoFkdAqGuE/8l5W3V9lChoBmgJaA9DCAgcCTTY1P6/lIaUUpRoFUsyaBZHQKhrR3j+7191fZQoaAZoCWgPQwjgSnZsBOIBwJSGlFKUaBVLMmgWR0CoawnTI/7jdX2UKGgGaAloD0MI+MWlKm1RB8CUhpRSlGgVSzJoFkdAqGrJRVIZqHV9lChoBmgJaA9DCEGbHD7pBAvAlIaUUpRoFUsyaBZHQKhspm1YyO91fZQoaAZoCWgPQwi/fogNFs7+v5SGlFKUaBVLMmgWR0CobGkLx7RfdX2UKGgGaAloD0MIjSrDuBsEA8CUhpRSlGgVSzJoFkdAqGwraIvalHV9lChoBmgJaA9DCExTBDi9S/S/lIaUUpRoFUsyaBZHQKhr6swtapx1ZS4="
60
  },
61
  "ep_success_buffer": {
62
  ":type:": "<class 'collections.deque'>",
 
69
  "ent_coef": 0.0,
70
  "vf_coef": 0.5,
71
  "max_grad_norm": 0.5,
72
+ "normalize_advantage": false,
73
+ "observation_space": {
74
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
75
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
76
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
77
+ "_shape": null,
78
+ "dtype": null,
79
+ "_np_random": null
80
+ },
81
+ "action_space": {
82
+ ":type:": "<class 'gym.spaces.box.Box'>",
83
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
84
+ "dtype": "float32",
85
+ "_shape": [
86
+ 3
87
+ ],
88
+ "low": "[-1. -1. -1.]",
89
+ "high": "[1. 1. 1.]",
90
+ "bounded_below": "[ True True True]",
91
+ "bounded_above": "[ True True True]",
92
+ "_np_random": null
93
+ },
94
+ "n_envs": 4
95
  }
a2c-PandaReachDense-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a15669055f2eb966bba20de07eea5161aa064a906e79cb7936f16ea27a685a7b
3
  size 44734
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e02abbb58b67ce530f5d3ffb131d2e245038d2cb1dd0f270d4538fe3e00c125b
3
  size 44734
a2c-PandaReachDense-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:50267b1e53b330eeb02234f810896cb8c75ccf15e9be2074e2e0497f99717b77
3
  size 46014
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6015551271290932b41bb6ec5ce717001e7aa7bbd4587c49bfa2eccba2f1d0d9
3
  size 46014
a2c-PandaReachDense-v2/system_info.txt CHANGED
@@ -1,7 +1,7 @@
1
- - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
- - Python: 3.8.10
3
- - Stable-Baselines3: 1.7.0
4
- - PyTorch: 1.13.1+cu116
5
  - GPU Enabled: True
6
  - Numpy: 1.22.4
7
  - Gym: 0.21.0
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.0+cu118
5
  - GPU Enabled: True
6
  - Numpy: 1.22.4
7
  - Gym: 0.21.0
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f133daac4c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f133daa3de0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677409948759868690, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAeCnPPkS6DD1z5xg/eCnPPkS6DD1z5xg/eCnPPkS6DD1z5xg/eCnPPkS6DD1z5xg/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAYgovP22dkz8w18q+bvhdPzgCzj8y9Im9S15BP+pOnD9py82+gMe7PvcAvb3rPi6/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB4Kc8+RLoMPXPnGD9JtIC7VZSdOhGKpDx4Kc8+RLoMPXPnGD9JtIC7VZSdOhGKpDx4Kc8+RLoMPXPnGD9JtIC7VZSdOhGKpDx4Kc8+RLoMPXPnGD9JtIC7VZSdOhGKpDyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.40461326 0.03435732 0.59728163]\n [0.40461326 0.03435732 0.59728163]\n [0.40461326 0.03435732 0.59728163]\n [0.40461326 0.03435732 0.59728163]]", "desired_goal": "[[ 0.6837522 1.1532418 -0.396173 ]\n [ 0.867072 1.6094427 -0.0673603 ]\n [ 0.75534505 1.2211583 -0.40194252]\n [ 0.36675644 -0.092287 -0.68064755]]", "observation": "[[ 0.40461326 0.03435732 0.59728163 -0.00392774 0.00120224 0.02008537]\n [ 0.40461326 0.03435732 0.59728163 -0.00392774 0.00120224 0.02008537]\n [ 0.40461326 0.03435732 0.59728163 -0.00392774 0.00120224 0.02008537]\n [ 0.40461326 0.03435732 0.59728163 -0.00392774 0.00120224 0.02008537]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAzaZWPbJ47j0R6hY+S1aGPRTf5b0keB49MNCVPZ+00D1c5QU+gTmqPWG9tDwo6ZM+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.05240517 0.11644115 0.14737727]\n [ 0.06559428 -0.11224189 0.03868879]\n [ 0.07315099 0.10190701 0.13075775]\n [ 0.08311749 0.02206296 0.28888822]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIqHLaU3KuCsCUhpRSlIwBbJRLMowBdJRHQKbheloDgZV1fZQoaAZoCWgPQwgLmMCtu9kHwJSGlFKUaBVLMmgWR0Cm4SPGQ0XQdX2UKGgGaAloD0MIZmmn5nKDA8CUhpRSlGgVSzJoFkdApuDJWV/tpnV9lChoBmgJaA9DCA2MvKyJxQjAlIaUUpRoFUsyaBZHQKbgcKUmlZZ1fZQoaAZoCWgPQwiw5CoWvykIwJSGlFKUaBVLMmgWR0Cm4zqoQ4CIdX2UKGgGaAloD0MIv9L58CzxEcCUhpRSlGgVSzJoFkdApuLkVWS2Y3V9lChoBmgJaA9DCBq/8EqS5wnAlIaUUpRoFUsyaBZHQKbiikpI+W51fZQoaAZoCWgPQwhoBYasbhUGwJSGlFKUaBVLMmgWR0Cm4jGYrrgPdX2UKGgGaAloD0MIVz82yY/YCsCUhpRSlGgVSzJoFkdApuSXTPSlWXV9lChoBmgJaA9DCE+w/zo3bQXAlIaUUpRoFUsyaBZHQKbkP+AmReV1fZQoaAZoCWgPQwiNJ4I4DycKwJSGlFKUaBVLMmgWR0Cm4+RUWEbpdX2UKGgGaAloD0MIFjPC24NQCcCUhpRSlGgVSzJoFkdApuOLCm/Fi3V9lChoBmgJaA9DCEn0Morl9gLAlIaUUpRoFUsyaBZHQKbloDSw4bV1fZQoaAZoCWgPQwi6u86G/AMSwJSGlFKUaBVLMmgWR0Cm5UiD/VAidX2UKGgGaAloD0MIHERrRZujDMCUhpRSlGgVSzJoFkdApuTtRYRuj3V9lChoBmgJaA9DCLCNeLKbORbAlIaUUpRoFUsyaBZHQKbklCKJl8R1fZQoaAZoCWgPQwj76T9rfqwUwJSGlFKUaBVLMmgWR0Cm5rJkf9xZdX2UKGgGaAloD0MI4zYawFsAC8CUhpRSlGgVSzJoFkdApuZa3ocJdHV9lChoBmgJaA9DCA38qIb9Pg7AlIaUUpRoFUsyaBZHQKbl/2exwAF1fZQoaAZoCWgPQwhMw/ARMWUHwJSGlFKUaBVLMmgWR0Cm5aZBsyi3dX2UKGgGaAloD0MIMUPjiSDuAcCUhpRSlGgVSzJoFkdApufUMCtA9nV9lChoBmgJaA9DCN/7G7RXXx3AlIaUUpRoFUsyaBZHQKbnfK28Zk11fZQoaAZoCWgPQwhxWBr4Uc0HwJSGlFKUaBVLMmgWR0Cm5yGNJe3QdX2UKGgGaAloD0MIURa+vtbVGMCUhpRSlGgVSzJoFkdApubIokRjBnV9lChoBmgJaA9DCJmAXyNJkATAlIaUUpRoFUsyaBZHQKbo2yP+4sp1fZQoaAZoCWgPQwjLgLOULEcJwJSGlFKUaBVLMmgWR0Cm6IOUdJardX2UKGgGaAloD0MI8nhafuAKGMCUhpRSlGgVSzJoFkdApugoNqgyunV9lChoBmgJaA9DCGVR2EXRIwDAlIaUUpRoFUsyaBZHQKbnzy7wrlN1fZQoaAZoCWgPQwi/u5UlOqsPwJSGlFKUaBVLMmgWR0Cm6etSqEOBdX2UKGgGaAloD0MIM/lmmxtzB8CUhpRSlGgVSzJoFkdApumTy4FzMnV9lChoBmgJaA9DCFTkEHFzGhDAlIaUUpRoFUsyaBZHQKbpOIJqqOt1fZQoaAZoCWgPQwii0LLuH6sNwJSGlFKUaBVLMmgWR0Cm6N9bgTAWdX2UKGgGaAloD0MIfjhIiPJlCMCUhpRSlGgVSzJoFkdApusAdhiLEXV9lChoBmgJaA9DCNfZkH9msArAlIaUUpRoFUsyaBZHQKbqqOOKfnR1fZQoaAZoCWgPQwiDFadaCwMdwJSGlFKUaBVLMmgWR0Cm6k2U8mrsdX2UKGgGaAloD0MIT6xT5XvmBsCUhpRSlGgVSzJoFkdApun1CRfWtnV9lChoBmgJaA9DCHEceLXcORTAlIaUUpRoFUsyaBZHQKbsCIPbwjN1fZQoaAZoCWgPQwiyZmSQuwj/v5SGlFKUaBVLMmgWR0Cm67E1uR9xdX2UKGgGaAloD0MIprbUQV6vAcCUhpRSlGgVSzJoFkdAputVxsEaEXV9lChoBmgJaA9DCK+w4H7AgwnAlIaUUpRoFUsyaBZHQKbq/IBikO91fZQoaAZoCWgPQwgTRUjdzh4IwJSGlFKUaBVLMmgWR0Cm7RrFGXoldX2UKGgGaAloD0MIiXlW0oqvAMCUhpRSlGgVSzJoFkdApuzDCcf/3nV9lChoBmgJaA9DCGechqjCnwvAlIaUUpRoFUsyaBZHQKbsZ6/IsAh1fZQoaAZoCWgPQwjyfXGpSrsLwJSGlFKUaBVLMmgWR0Cm7A6aTfSAdX2UKGgGaAloD0MI7nppigAHAMCUhpRSlGgVSzJoFkdApu4ksH0K7nV9lChoBmgJaA9DCA+3Q8NilA/AlIaUUpRoFUsyaBZHQKbtzSYPXkJ1fZQoaAZoCWgPQwim0eRiDEwFwJSGlFKUaBVLMmgWR0Cm7XKpLmITdX2UKGgGaAloD0MIrwrUYvAwCMCUhpRSlGgVSzJoFkdApu0ZnnMdLnV9lChoBmgJaA9DCGPQCaGDzgTAlIaUUpRoFUsyaBZHQKbvMcEvCdl1fZQoaAZoCWgPQwhb7swEw5kYwJSGlFKUaBVLMmgWR0Cm7tpLmITHdX2UKGgGaAloD0MIy4XKv5aXBcCUhpRSlGgVSzJoFkdApu5+5Yoy9HV9lChoBmgJaA9DCGnJ42n5IQ7AlIaUUpRoFUsyaBZHQKbuJdcjZ+R1fZQoaAZoCWgPQwg41zBD40kGwJSGlFKUaBVLMmgWR0Cm8DTlkpZwdX2UKGgGaAloD0MI2xX6YBkrEsCUhpRSlGgVSzJoFkdApu/dZ3cHnnV9lChoBmgJaA9DCBSTN8DMlwfAlIaUUpRoFUsyaBZHQKbvgjfNzKd1fZQoaAZoCWgPQwjsFRbcDxgIwJSGlFKUaBVLMmgWR0Cm7ykGJN0vdX2UKGgGaAloD0MIfCqnPSWHDcCUhpRSlGgVSzJoFkdApvE2ys0YTHV9lChoBmgJaA9DCB5uh4bFaAfAlIaUUpRoFUsyaBZHQKbw33rUsnR1fZQoaAZoCWgPQwivQspPqp0UwJSGlFKUaBVLMmgWR0Cm8IQ7cO9WdX2UKGgGaAloD0MIllmEYiuIEcCUhpRSlGgVSzJoFkdApvArH4oJA3V9lChoBmgJaA9DCEgyq3e4/Q3AlIaUUpRoFUsyaBZHQKbyQPzWf9R1fZQoaAZoCWgPQwhXCRaHMz8PwJSGlFKUaBVLMmgWR0Cm8emc4HX3dX2UKGgGaAloD0MIYr8n1qkiFMCUhpRSlGgVSzJoFkdApvGOaQV9GHV9lChoBmgJaA9DCM1YNJ2djATAlIaUUpRoFUsyaBZHQKbxNUvwmVt1fZQoaAZoCWgPQwirPeyFAtYHwJSGlFKUaBVLMmgWR0Cm80kl3QlbdX2UKGgGaAloD0MI2SYVjbXfDcCUhpRSlGgVSzJoFkdApvLxpeu3dHV9lChoBmgJaA9DCMlaQ6m9+BHAlIaUUpRoFUsyaBZHQKbyljEvTPV1fZQoaAZoCWgPQwgsuvWaHjQLwJSGlFKUaBVLMmgWR0Cm8j0Xxe9jdX2UKGgGaAloD0MIG2ZoPBGkDMCUhpRSlGgVSzJoFkdApvRPCQ9zO3V9lChoBmgJaA9DCCcxCKwcOhLAlIaUUpRoFUsyaBZHQKbz93ztkWh1fZQoaAZoCWgPQwhpVyHlJ7UEwJSGlFKUaBVLMmgWR0Cm85wRXfZVdX2UKGgGaAloD0MIPWAeMuVDC8CUhpRSlGgVSzJoFkdApvNC3kPtlnV9lChoBmgJaA9DCKp+pfPhGQrAlIaUUpRoFUsyaBZHQKb1V6dlNDd1fZQoaAZoCWgPQwjYRGYucJkOwJSGlFKUaBVLMmgWR0Cm9QAmAskIdX2UKGgGaAloD0MIXMmOjUDcCsCUhpRSlGgVSzJoFkdApvSk7+1jRXV9lChoBmgJaA9DCAg57//jBAfAlIaUUpRoFUsyaBZHQKb0S+XZ5A11fZQoaAZoCWgPQwiyYrg6ACIIwJSGlFKUaBVLMmgWR0Cm9ljFqBVddX2UKGgGaAloD0MIM6mhDcDmA8CUhpRSlGgVSzJoFkdApvYBQHiWFHV9lChoBmgJaA9DCMPxfAbU+xTAlIaUUpRoFUsyaBZHQKb1pbs4T9N1fZQoaAZoCWgPQwhzaJHtfF8JwJSGlFKUaBVLMmgWR0Cm9Uyp71IzdX2UKGgGaAloD0MIeJeL+E7MBsCUhpRSlGgVSzJoFkdApvd7J8v25HV9lChoBmgJaA9DCMCy0qQUpBLAlIaUUpRoFUsyaBZHQKb3I8lHBk91fZQoaAZoCWgPQwhjJlEv+MQRwJSGlFKUaBVLMmgWR0Cm9si1y/9HdX2UKGgGaAloD0MIp5at9UXiBcCUhpRSlGgVSzJoFkdApvZvvBrN4nV9lChoBmgJaA9DCELr4ctEQRXAlIaUUpRoFUsyaBZHQKb43I4lyBF1fZQoaAZoCWgPQwgvFRvzOvIXwJSGlFKUaBVLMmgWR0Cm+IWqT8pDdX2UKGgGaAloD0MIigPo9/37EcCUhpRSlGgVSzJoFkdApvgqwD/2kHV9lChoBmgJaA9DCODYs+cytQTAlIaUUpRoFUsyaBZHQKb30c0+C9R1fZQoaAZoCWgPQwhWuOUjKekNwJSGlFKUaBVLMmgWR0Cm+ndb5dnkdX2UKGgGaAloD0MIMGXggJbOCcCUhpRSlGgVSzJoFkdApvogJgLJCHV9lChoBmgJaA9DCJ3zUxwHng/AlIaUUpRoFUsyaBZHQKb5xXNke6t1fZQoaAZoCWgPQwgycasgBhoNwJSGlFKUaBVLMmgWR0Cm+W0/W1+idX2UKGgGaAloD0MIAd4CCYofBMCUhpRSlGgVSzJoFkdApvwnqZ+hG3V9lChoBmgJaA9DCPg3aK8+HgjAlIaUUpRoFUsyaBZHQKb70FQEZBN1fZQoaAZoCWgPQwjFILByaDESwJSGlFKUaBVLMmgWR0Cm+3XBxgiNdX2UKGgGaAloD0MIiXrBpzn5C8CUhpRSlGgVSzJoFkdApvsdTcZccHV9lChoBmgJaA9DCGnGounspAXAlIaUUpRoFUsyaBZHQKb+CuRLbpN1fZQoaAZoCWgPQwiphZLJqf0KwJSGlFKUaBVLMmgWR0Cm/bQ0GeMAdX2UKGgGaAloD0MI7bYLzXV6DcCUhpRSlGgVSzJoFkdApv1ZvvSc9XV9lChoBmgJaA9DCMl3KXXJ+AHAlIaUUpRoFUsyaBZHQKb9AY2sJY11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f506afef280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f506afee4c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681676258815908844, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAQh25PrdWYb2UINM+Qh25PrdWYb2UINM+Qh25PrdWYb2UINM+Qh25PrdWYb2UINM+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAncvAvz8ymb5Ft42+nHqQv23i2L8cG4G+kyYiPs5Ps7/gyzW/4sP6Pjac477mr2S+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABCHbk+t1ZhvZQg0z7jZlw8tw8AvELpgTdCHbk+t1ZhvZQg0z7jZlw8tw8AvELpgTdCHbk+t1ZhvZQg0z7jZlw8tw8AvELpgTdCHbk+t1ZhvZQg0z7jZlw8tw8AvELpgTeUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.36155134 -0.05501434 0.41235793]\n [ 0.36155134 -0.05501434 0.41235793]\n [ 0.36155134 -0.05501434 0.41235793]\n [ 0.36155134 -0.05501434 0.41235793]]", "desired_goal": "[[-1.5062138 -0.29921147 -0.27678886]\n [-1.1287417 -1.69441 -0.25215995]\n [ 0.15835027 -1.400873 -0.71014214]\n [ 0.48977572 -0.44455117 -0.22332725]]", "observation": "[[ 3.61551344e-01 -5.50143383e-02 4.12357926e-01 1.34522645e-02\n -7.81624671e-03 1.54866175e-05]\n [ 3.61551344e-01 -5.50143383e-02 4.12357926e-01 1.34522645e-02\n -7.81624671e-03 1.54866175e-05]\n [ 3.61551344e-01 -5.50143383e-02 4.12357926e-01 1.34522645e-02\n -7.81624671e-03 1.54866175e-05]\n [ 3.61551344e-01 -5.50143383e-02 4.12357926e-01 1.34522645e-02\n -7.81624671e-03 1.54866175e-05]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAjUubPGR0hr35GEA+g79hPWJBv7386pE+33ZQvQ6CwLzpnIg9CY4DvhDXQ709bmQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.01895692 -0.06565168 0.18759526]\n [ 0.05511428 -0.09338643 0.2849959 ]\n [-0.05089461 -0.02349951 0.06670553]\n [-0.12847151 -0.04781252 0.22307678]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIS7GjcajfAcCUhpRSlIwBbJRLMowBdJRHQKhNKW+oLoh1fZQoaAZoCWgPQwjk9zb92Y/hv5SGlFKUaBVLMmgWR0CoTOwAlv61dX2UKGgGaAloD0MI5/up8dLN87+UhpRSlGgVSzJoFkdAqEyuY+jdpXV9lChoBmgJaA9DCPBRf73CAuu/lIaUUpRoFUsyaBZHQKhMbcB2fTV1fZQoaAZoCWgPQwhiLxSwHYwAwJSGlFKUaBVLMmgWR0CoTlwS8J2MdX2UKGgGaAloD0MIUgslk1O7/7+UhpRSlGgVSzJoFkdAqE4fHLida3V9lChoBmgJaA9DCLDkKha/qf6/lIaUUpRoFUsyaBZHQKhN4ZXMhX91fZQoaAZoCWgPQwjQK556pMH0v5SGlFKUaBVLMmgWR0CoTaD8DSw4dX2UKGgGaAloD0MIluttMxVi+L+UhpRSlGgVSzJoFkdAqE+sINVinnV9lChoBmgJaA9DCBQhdTv76gfAlIaUUpRoFUsyaBZHQKhPbqwhW5p1fZQoaAZoCWgPQwiA12fO+lT2v5SGlFKUaBVLMmgWR0CoTzHcclw+dX2UKGgGaAloD0MISUvl7Qgn/b+UhpRSlGgVSzJoFkdAqE7xYDDCQHV9lChoBmgJaA9DCL4Ts14MpfG/lIaUUpRoFUsyaBZHQKhQxPTG5tp1fZQoaAZoCWgPQwgQkgVM4FYFwJSGlFKUaBVLMmgWR0CoUId38n/ldX2UKGgGaAloD0MIJUBNLVvr+b+UhpRSlGgVSzJoFkdAqFBJ13dKunV9lChoBmgJaA9DCMQKt3wkZf2/lIaUUpRoFUsyaBZHQKhQCVNYbKl1fZQoaAZoCWgPQwi0dtuF5rrpv5SGlFKUaBVLMmgWR0CoUd9PLxI8dX2UKGgGaAloD0MItp22RgSDAcCUhpRSlGgVSzJoFkdAqFGhyuIRAnV9lChoBmgJaA9DCK+zIf/MoATAlIaUUpRoFUsyaBZHQKhRZCuU2UB1fZQoaAZoCWgPQwil942vPTPxv5SGlFKUaBVLMmgWR0CoUSOK4x1xdX2UKGgGaAloD0MIu2JGeHuQ77+UhpRSlGgVSzJoFkdAqFL/q5byH3V9lChoBmgJaA9DCB8uOe6UzgnAlIaUUpRoFUsyaBZHQKhSwiUxEfF1fZQoaAZoCWgPQwjEBaBRurT8v5SGlFKUaBVLMmgWR0CoUoR/d69kdX2UKGgGaAloD0MIqn8QyZAj97+UhpRSlGgVSzJoFkdAqFJD5Kvmo3V9lChoBmgJaA9DCGB2Tx4W6uu/lIaUUpRoFUsyaBZHQKhUIIsyzol1fZQoaAZoCWgPQwiz0qQUdLvzv5SGlFKUaBVLMmgWR0CoU+LNwBHTdX2UKGgGaAloD0MIz04GR8kr9r+UhpRSlGgVSzJoFkdAqFOlNahYeXV9lChoBmgJaA9DCOpae5+qAgfAlIaUUpRoFUsyaBZHQKhTZK0UoKF1fZQoaAZoCWgPQwhh4/p3fUYHwJSGlFKUaBVLMmgWR0CoVTv4/NaAdX2UKGgGaAloD0MIu+8YHvvZ77+UhpRSlGgVSzJoFkdAqFT+d7OVxHV9lChoBmgJaA9DCLN9yFuu3gTAlIaUUpRoFUsyaBZHQKhUwNWEK3N1fZQoaAZoCWgPQwgroib6fBQAwJSGlFKUaBVLMmgWR0CoVIBIe5nUdX2UKGgGaAloD0MIlGjJ42lZAcCUhpRSlGgVSzJoFkdAqFZuRLbpNnV9lChoBmgJaA9DCNulDYelIQvAlIaUUpRoFUsyaBZHQKhWMKGcnVp1fZQoaAZoCWgPQwg3/686cmQAwJSGlFKUaBVLMmgWR0CoVfLgflp5dX2UKGgGaAloD0MIu7n4255g97+UhpRSlGgVSzJoFkdAqFWyFj/dZnV9lChoBmgJaA9DCFLuPsdHC/e/lIaUUpRoFUsyaBZHQKhXgx20Re11fZQoaAZoCWgPQwgyyF2EKaoHwJSGlFKUaBVLMmgWR0CoV0Wk8A7xdX2UKGgGaAloD0MIcJS8OsegAcCUhpRSlGgVSzJoFkdAqFcH003wTnV9lChoBmgJaA9DCNOFWP0RRvi/lIaUUpRoFUsyaBZHQKhWxzVc2R91fZQoaAZoCWgPQwhF2PD0Sln2v5SGlFKUaBVLMmgWR0CoWMbSZ0CBdX2UKGgGaAloD0MI0lRP5h/dC8CUhpRSlGgVSzJoFkdAqFiJbjcVQHV9lChoBmgJaA9DCBu4A3XKo/+/lIaUUpRoFUsyaBZHQKhYTLdvbXZ1fZQoaAZoCWgPQwhAvoQKDo8AwJSGlFKUaBVLMmgWR0CoWAwpON5udX2UKGgGaAloD0MIoE/kSdJVBsCUhpRSlGgVSzJoFkdAqFns1Q66rnV9lChoBmgJaA9DCBPXMa64+PO/lIaUUpRoFUsyaBZHQKhZr2/SH/N1fZQoaAZoCWgPQwgk7UYf84EJwJSGlFKUaBVLMmgWR0CoWXHo5ggHdX2UKGgGaAloD0MIvVZCd0ncAsCUhpRSlGgVSzJoFkdAqFkxeHBUJnV9lChoBmgJaA9DCLIOR1fpTgHAlIaUUpRoFUsyaBZHQKhbDteD3/R1fZQoaAZoCWgPQwjEz38PXrvjv5SGlFKUaBVLMmgWR0CoWtFijL0SdX2UKGgGaAloD0MIgA9eu7Sh8b+UhpRSlGgVSzJoFkdAqFqTp7kXDXV9lChoBmgJaA9DCCB8KNGShwPAlIaUUpRoFUsyaBZHQKhaUxbjcVR1fZQoaAZoCWgPQwhs7BLVW0P7v5SGlFKUaBVLMmgWR0CoXCLeyiVTdX2UKGgGaAloD0MI06QUdHsJ8L+UhpRSlGgVSzJoFkdAqFvliay8jHV9lChoBmgJaA9DCDqSy39IPwPAlIaUUpRoFUsyaBZHQKhbp9QXQ+l1fZQoaAZoCWgPQwinkZbK2xHtv5SGlFKUaBVLMmgWR0CoW2dH+ZPVdX2UKGgGaAloD0MIPdaMDHLXAcCUhpRSlGgVSzJoFkdAqF1EyWRigHV9lChoBmgJaA9DCO56aYoAp+K/lIaUUpRoFUsyaBZHQKhdBzq8lHB1fZQoaAZoCWgPQwjPh2cJMoL3v5SGlFKUaBVLMmgWR0CoXMmB4D9wdX2UKGgGaAloD0MIR+NQvws7AsCUhpRSlGgVSzJoFkdAqFyI4VARkHV9lChoBmgJaA9DCGzOwTOhSf6/lIaUUpRoFUsyaBZHQKhex02cawV1fZQoaAZoCWgPQwhH5/wUxwHzv5SGlFKUaBVLMmgWR0CoXoqkuYhMdX2UKGgGaAloD0MIj8TL07ki9L+UhpRSlGgVSzJoFkdAqF5N47ihnXV9lChoBmgJaA9DCD56w33klgDAlIaUUpRoFUsyaBZHQKheDiVB2Oh1fZQoaAZoCWgPQwjlCu9yEb8GwJSGlFKUaBVLMmgWR0CoYJnh86V/dX2UKGgGaAloD0MIuLHZkeo79b+UhpRSlGgVSzJoFkdAqGBdNnGsFXV9lChoBmgJaA9DCG1YU1kUdgLAlIaUUpRoFUsyaBZHQKhgIHIp6Qh1fZQoaAZoCWgPQwgAVkeOdAbwv5SGlFKUaBVLMmgWR0CoX+DjJdSmdX2UKGgGaAloD0MIPBVwz/Nn/7+UhpRSlGgVSzJoFkdAqGJ9Drqt5nV9lChoBmgJaA9DCG0Dd6BOmQLAlIaUUpRoFUsyaBZHQKhiQKpDNQl1fZQoaAZoCWgPQwglsaTcfQ70v5SGlFKUaBVLMmgWR0CoYgQhGH58dX2UKGgGaAloD0MIoQ+WsaHb/b+UhpRSlGgVSzJoFkdAqGHEg8r7O3V9lChoBmgJaA9DCDKwjuOHivu/lIaUUpRoFUsyaBZHQKhkYnOSntR1fZQoaAZoCWgPQwgxCoLHt7f8v5SGlFKUaBVLMmgWR0CoZCXirDIjdX2UKGgGaAloD0MIpmJjXkfc+7+UhpRSlGgVSzJoFkdAqGPpNoJzDHV9lChoBmgJaA9DCEs6ysFsQve/lIaUUpRoFUsyaBZHQKhjqWRigCh1fZQoaAZoCWgPQwiR7ucU5OcIwJSGlFKUaBVLMmgWR0CoZkTU7Sy/dX2UKGgGaAloD0MIzeodbofG9r+UhpRSlGgVSzJoFkdAqGYIVEd/8XV9lChoBmgJaA9DCD+PUZ55+fu/lIaUUpRoFUsyaBZHQKhly46wMYx1fZQoaAZoCWgPQwgOhGQBE7gNwJSGlFKUaBVLMmgWR0CoZYvq1PWQdX2UKGgGaAloD0MIKJtyhXe5B8CUhpRSlGgVSzJoFkdAqGgj8pCrtHV9lChoBmgJaA9DCBWoxeBhmvO/lIaUUpRoFUsyaBZHQKhn5oFFDv51fZQoaAZoCWgPQwj9+EuL+qT7v5SGlFKUaBVLMmgWR0CoZ6jiwSrYdX2UKGgGaAloD0MI+ir52F2g/r+UhpRSlGgVSzJoFkdAqGdoUSIxg3V9lChoBmgJaA9DCHFUbqKWpv2/lIaUUpRoFUsyaBZHQKhpRBQemvZ1fZQoaAZoCWgPQwiGONbFbXT2v5SGlFKUaBVLMmgWR0CoaQajvd/KdX2UKGgGaAloD0MI12g50EPt67+UhpRSlGgVSzJoFkdAqGjJGKAJ9nV9lChoBmgJaA9DCPvo1JXP8u2/lIaUUpRoFUsyaBZHQKhoiI1LrX11fZQoaAZoCWgPQwg/x0eLM0byv5SGlFKUaBVLMmgWR0Coamm0E5hjdX2UKGgGaAloD0MIKh+CqtFr/L+UhpRSlGgVSzJoFkdAqGosSVW0Z3V9lChoBmgJaA9DCGk2j8NgPvi/lIaUUpRoFUsyaBZHQKhp7ubZvk11fZQoaAZoCWgPQwgqVaLsLSX1v5SGlFKUaBVLMmgWR0Coaa6IFeOXdX2UKGgGaAloD0MI1QRR9wHI9b+UhpRSlGgVSzJoFkdAqGuE/8l5W3V9lChoBmgJaA9DCAgcCTTY1P6/lIaUUpRoFUsyaBZHQKhrR3j+7191fZQoaAZoCWgPQwjgSnZsBOIBwJSGlFKUaBVLMmgWR0CoawnTI/7jdX2UKGgGaAloD0MI+MWlKm1RB8CUhpRSlGgVSzJoFkdAqGrJRVIZqHV9lChoBmgJaA9DCEGbHD7pBAvAlIaUUpRoFUsyaBZHQKhspm1YyO91fZQoaAZoCWgPQwi/fogNFs7+v5SGlFKUaBVLMmgWR0CobGkLx7RfdX2UKGgGaAloD0MIjSrDuBsEA8CUhpRSlGgVSzJoFkdAqGwraIvalHV9lChoBmgJaA9DCExTBDi9S/S/lIaUUpRoFUsyaBZHQKhr6swtapx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -3.678122641146183, "std_reward": 1.118983846798831, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-26T12:01:36.137861"}
 
1
+ {"mean_reward": -2.337086148560047, "std_reward": 0.7039098976037863, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-16T21:10:24.354050"}
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:134af5e966914f1ea98f823ffc00d70fa229ba233ab4ea17700ac1705a61d40b
3
- size 3056
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6623fcd1249169171f16a579246cf92c1d321768af86b8db40b9433790377f1
3
+ size 2381