Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -1
- a2c-PandaReachDense-v2/data +35 -34
- a2c-PandaReachDense-v2/policy.optimizer.pth +1 -1
- a2c-PandaReachDense-v2/policy.pth +1 -1
- a2c-PandaReachDense-v2/system_info.txt +4 -4
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +2 -2
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -2.34 +/- 0.70
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:12caf706679346d0c61f20779a231caddbdbdce095984d2ad8ea7f6d81c30d4c
|
3 |
+
size 108166
|
a2c-PandaReachDense-v2/_stable_baselines3_version
CHANGED
@@ -1 +1 @@
|
|
1 |
-
1.
|
|
|
1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
@@ -19,46 +19,24 @@
|
|
19 |
"weight_decay": 0
|
20 |
}
|
21 |
},
|
22 |
-
"observation_space": {
|
23 |
-
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
-
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
-
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
-
"_shape": null,
|
27 |
-
"dtype": null,
|
28 |
-
"_np_random": null
|
29 |
-
},
|
30 |
-
"action_space": {
|
31 |
-
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
-
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
-
"dtype": "float32",
|
34 |
-
"_shape": [
|
35 |
-
3
|
36 |
-
],
|
37 |
-
"low": "[-1. -1. -1.]",
|
38 |
-
"high": "[1. 1. 1.]",
|
39 |
-
"bounded_below": "[ True True True]",
|
40 |
-
"bounded_above": "[ True True True]",
|
41 |
-
"_np_random": null
|
42 |
-
},
|
43 |
-
"n_envs": 4,
|
44 |
"num_timesteps": 1000000,
|
45 |
"_total_timesteps": 1000000,
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
-
"start_time":
|
50 |
"learning_rate": 0.0007,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
53 |
":type:": "<class 'function'>",
|
54 |
-
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
-
":serialized:": "
|
59 |
-
"achieved_goal": "[[0.
|
60 |
-
"desired_goal": "[[
|
61 |
-
"observation": "[[
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,18 +44,19 @@
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
-
"desired_goal": "[[ 0.
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
75 |
"use_sde": false,
|
76 |
"sde_sample_freq": -1,
|
77 |
"_current_progress_remaining": 0.0,
|
|
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
@@ -90,5 +69,27 @@
|
|
90 |
"ent_coef": 0.0,
|
91 |
"vf_coef": 0.5,
|
92 |
"max_grad_norm": 0.5,
|
93 |
-
"normalize_advantage": false
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
}
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f506afef280>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f506afee4c0>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
|
|
19 |
"weight_decay": 0
|
20 |
}
|
21 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
"num_timesteps": 1000000,
|
23 |
"_total_timesteps": 1000000,
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
+
"start_time": 1681676258815908844,
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
31 |
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAQh25PrdWYb2UINM+Qh25PrdWYb2UINM+Qh25PrdWYb2UINM+Qh25PrdWYb2UINM+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAncvAvz8ymb5Ft42+nHqQv23i2L8cG4G+kyYiPs5Ps7/gyzW/4sP6Pjac477mr2S+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABCHbk+t1ZhvZQg0z7jZlw8tw8AvELpgTdCHbk+t1ZhvZQg0z7jZlw8tw8AvELpgTdCHbk+t1ZhvZQg0z7jZlw8tw8AvELpgTdCHbk+t1ZhvZQg0z7jZlw8tw8AvELpgTeUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[ 0.36155134 -0.05501434 0.41235793]\n [ 0.36155134 -0.05501434 0.41235793]\n [ 0.36155134 -0.05501434 0.41235793]\n [ 0.36155134 -0.05501434 0.41235793]]",
|
38 |
+
"desired_goal": "[[-1.5062138 -0.29921147 -0.27678886]\n [-1.1287417 -1.69441 -0.25215995]\n [ 0.15835027 -1.400873 -0.71014214]\n [ 0.48977572 -0.44455117 -0.22332725]]",
|
39 |
+
"observation": "[[ 3.61551344e-01 -5.50143383e-02 4.12357926e-01 1.34522645e-02\n -7.81624671e-03 1.54866175e-05]\n [ 3.61551344e-01 -5.50143383e-02 4.12357926e-01 1.34522645e-02\n -7.81624671e-03 1.54866175e-05]\n [ 3.61551344e-01 -5.50143383e-02 4.12357926e-01 1.34522645e-02\n -7.81624671e-03 1.54866175e-05]\n [ 3.61551344e-01 -5.50143383e-02 4.12357926e-01 1.34522645e-02\n -7.81624671e-03 1.54866175e-05]]"
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAjUubPGR0hr35GEA+g79hPWJBv7386pE+33ZQvQ6CwLzpnIg9CY4DvhDXQ709bmQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[ 0.01895692 -0.06565168 0.18759526]\n [ 0.05511428 -0.09338643 0.2849959 ]\n [-0.05089461 -0.02349951 0.06670553]\n [-0.12847151 -0.04781252 0.22307678]]",
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
53 |
"use_sde": false,
|
54 |
"sde_sample_freq": -1,
|
55 |
"_current_progress_remaining": 0.0,
|
56 |
+
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIS7GjcajfAcCUhpRSlIwBbJRLMowBdJRHQKhNKW+oLoh1fZQoaAZoCWgPQwjk9zb92Y/hv5SGlFKUaBVLMmgWR0CoTOwAlv61dX2UKGgGaAloD0MI5/up8dLN87+UhpRSlGgVSzJoFkdAqEyuY+jdpXV9lChoBmgJaA9DCPBRf73CAuu/lIaUUpRoFUsyaBZHQKhMbcB2fTV1fZQoaAZoCWgPQwhiLxSwHYwAwJSGlFKUaBVLMmgWR0CoTlwS8J2MdX2UKGgGaAloD0MIUgslk1O7/7+UhpRSlGgVSzJoFkdAqE4fHLida3V9lChoBmgJaA9DCLDkKha/qf6/lIaUUpRoFUsyaBZHQKhN4ZXMhX91fZQoaAZoCWgPQwjQK556pMH0v5SGlFKUaBVLMmgWR0CoTaD8DSw4dX2UKGgGaAloD0MIluttMxVi+L+UhpRSlGgVSzJoFkdAqE+sINVinnV9lChoBmgJaA9DCBQhdTv76gfAlIaUUpRoFUsyaBZHQKhPbqwhW5p1fZQoaAZoCWgPQwiA12fO+lT2v5SGlFKUaBVLMmgWR0CoTzHcclw+dX2UKGgGaAloD0MISUvl7Qgn/b+UhpRSlGgVSzJoFkdAqE7xYDDCQHV9lChoBmgJaA9DCL4Ts14MpfG/lIaUUpRoFUsyaBZHQKhQxPTG5tp1fZQoaAZoCWgPQwgQkgVM4FYFwJSGlFKUaBVLMmgWR0CoUId38n/ldX2UKGgGaAloD0MIJUBNLVvr+b+UhpRSlGgVSzJoFkdAqFBJ13dKunV9lChoBmgJaA9DCMQKt3wkZf2/lIaUUpRoFUsyaBZHQKhQCVNYbKl1fZQoaAZoCWgPQwi0dtuF5rrpv5SGlFKUaBVLMmgWR0CoUd9PLxI8dX2UKGgGaAloD0MItp22RgSDAcCUhpRSlGgVSzJoFkdAqFGhyuIRAnV9lChoBmgJaA9DCK+zIf/MoATAlIaUUpRoFUsyaBZHQKhRZCuU2UB1fZQoaAZoCWgPQwil942vPTPxv5SGlFKUaBVLMmgWR0CoUSOK4x1xdX2UKGgGaAloD0MIu2JGeHuQ77+UhpRSlGgVSzJoFkdAqFL/q5byH3V9lChoBmgJaA9DCB8uOe6UzgnAlIaUUpRoFUsyaBZHQKhSwiUxEfF1fZQoaAZoCWgPQwjEBaBRurT8v5SGlFKUaBVLMmgWR0CoUoR/d69kdX2UKGgGaAloD0MIqn8QyZAj97+UhpRSlGgVSzJoFkdAqFJD5Kvmo3V9lChoBmgJaA9DCGB2Tx4W6uu/lIaUUpRoFUsyaBZHQKhUIIsyzol1fZQoaAZoCWgPQwiz0qQUdLvzv5SGlFKUaBVLMmgWR0CoU+LNwBHTdX2UKGgGaAloD0MIz04GR8kr9r+UhpRSlGgVSzJoFkdAqFOlNahYeXV9lChoBmgJaA9DCOpae5+qAgfAlIaUUpRoFUsyaBZHQKhTZK0UoKF1fZQoaAZoCWgPQwhh4/p3fUYHwJSGlFKUaBVLMmgWR0CoVTv4/NaAdX2UKGgGaAloD0MIu+8YHvvZ77+UhpRSlGgVSzJoFkdAqFT+d7OVxHV9lChoBmgJaA9DCLN9yFuu3gTAlIaUUpRoFUsyaBZHQKhUwNWEK3N1fZQoaAZoCWgPQwgroib6fBQAwJSGlFKUaBVLMmgWR0CoVIBIe5nUdX2UKGgGaAloD0MIlGjJ42lZAcCUhpRSlGgVSzJoFkdAqFZuRLbpNnV9lChoBmgJaA9DCNulDYelIQvAlIaUUpRoFUsyaBZHQKhWMKGcnVp1fZQoaAZoCWgPQwg3/686cmQAwJSGlFKUaBVLMmgWR0CoVfLgflp5dX2UKGgGaAloD0MIu7n4255g97+UhpRSlGgVSzJoFkdAqFWyFj/dZnV9lChoBmgJaA9DCFLuPsdHC/e/lIaUUpRoFUsyaBZHQKhXgx20Re11fZQoaAZoCWgPQwgyyF2EKaoHwJSGlFKUaBVLMmgWR0CoV0Wk8A7xdX2UKGgGaAloD0MIcJS8OsegAcCUhpRSlGgVSzJoFkdAqFcH003wTnV9lChoBmgJaA9DCNOFWP0RRvi/lIaUUpRoFUsyaBZHQKhWxzVc2R91fZQoaAZoCWgPQwhF2PD0Sln2v5SGlFKUaBVLMmgWR0CoWMbSZ0CBdX2UKGgGaAloD0MI0lRP5h/dC8CUhpRSlGgVSzJoFkdAqFiJbjcVQHV9lChoBmgJaA9DCBu4A3XKo/+/lIaUUpRoFUsyaBZHQKhYTLdvbXZ1fZQoaAZoCWgPQwhAvoQKDo8AwJSGlFKUaBVLMmgWR0CoWAwpON5udX2UKGgGaAloD0MIoE/kSdJVBsCUhpRSlGgVSzJoFkdAqFns1Q66rnV9lChoBmgJaA9DCBPXMa64+PO/lIaUUpRoFUsyaBZHQKhZr2/SH/N1fZQoaAZoCWgPQwgk7UYf84EJwJSGlFKUaBVLMmgWR0CoWXHo5ggHdX2UKGgGaAloD0MIvVZCd0ncAsCUhpRSlGgVSzJoFkdAqFkxeHBUJnV9lChoBmgJaA9DCLIOR1fpTgHAlIaUUpRoFUsyaBZHQKhbDteD3/R1fZQoaAZoCWgPQwjEz38PXrvjv5SGlFKUaBVLMmgWR0CoWtFijL0SdX2UKGgGaAloD0MIgA9eu7Sh8b+UhpRSlGgVSzJoFkdAqFqTp7kXDXV9lChoBmgJaA9DCCB8KNGShwPAlIaUUpRoFUsyaBZHQKhaUxbjcVR1fZQoaAZoCWgPQwhs7BLVW0P7v5SGlFKUaBVLMmgWR0CoXCLeyiVTdX2UKGgGaAloD0MI06QUdHsJ8L+UhpRSlGgVSzJoFkdAqFvliay8jHV9lChoBmgJaA9DCDqSy39IPwPAlIaUUpRoFUsyaBZHQKhbp9QXQ+l1fZQoaAZoCWgPQwinkZbK2xHtv5SGlFKUaBVLMmgWR0CoW2dH+ZPVdX2UKGgGaAloD0MIPdaMDHLXAcCUhpRSlGgVSzJoFkdAqF1EyWRigHV9lChoBmgJaA9DCO56aYoAp+K/lIaUUpRoFUsyaBZHQKhdBzq8lHB1fZQoaAZoCWgPQwjPh2cJMoL3v5SGlFKUaBVLMmgWR0CoXMmB4D9wdX2UKGgGaAloD0MIR+NQvws7AsCUhpRSlGgVSzJoFkdAqFyI4VARkHV9lChoBmgJaA9DCGzOwTOhSf6/lIaUUpRoFUsyaBZHQKhex02cawV1fZQoaAZoCWgPQwhH5/wUxwHzv5SGlFKUaBVLMmgWR0CoXoqkuYhMdX2UKGgGaAloD0MIj8TL07ki9L+UhpRSlGgVSzJoFkdAqF5N47ihnXV9lChoBmgJaA9DCD56w33klgDAlIaUUpRoFUsyaBZHQKheDiVB2Oh1fZQoaAZoCWgPQwjlCu9yEb8GwJSGlFKUaBVLMmgWR0CoYJnh86V/dX2UKGgGaAloD0MIuLHZkeo79b+UhpRSlGgVSzJoFkdAqGBdNnGsFXV9lChoBmgJaA9DCG1YU1kUdgLAlIaUUpRoFUsyaBZHQKhgIHIp6Qh1fZQoaAZoCWgPQwgAVkeOdAbwv5SGlFKUaBVLMmgWR0CoX+DjJdSmdX2UKGgGaAloD0MIPBVwz/Nn/7+UhpRSlGgVSzJoFkdAqGJ9Drqt5nV9lChoBmgJaA9DCG0Dd6BOmQLAlIaUUpRoFUsyaBZHQKhiQKpDNQl1fZQoaAZoCWgPQwglsaTcfQ70v5SGlFKUaBVLMmgWR0CoYgQhGH58dX2UKGgGaAloD0MIoQ+WsaHb/b+UhpRSlGgVSzJoFkdAqGHEg8r7O3V9lChoBmgJaA9DCDKwjuOHivu/lIaUUpRoFUsyaBZHQKhkYnOSntR1fZQoaAZoCWgPQwgxCoLHt7f8v5SGlFKUaBVLMmgWR0CoZCXirDIjdX2UKGgGaAloD0MIpmJjXkfc+7+UhpRSlGgVSzJoFkdAqGPpNoJzDHV9lChoBmgJaA9DCEs6ysFsQve/lIaUUpRoFUsyaBZHQKhjqWRigCh1fZQoaAZoCWgPQwiR7ucU5OcIwJSGlFKUaBVLMmgWR0CoZkTU7Sy/dX2UKGgGaAloD0MIzeodbofG9r+UhpRSlGgVSzJoFkdAqGYIVEd/8XV9lChoBmgJaA9DCD+PUZ55+fu/lIaUUpRoFUsyaBZHQKhly46wMYx1fZQoaAZoCWgPQwgOhGQBE7gNwJSGlFKUaBVLMmgWR0CoZYvq1PWQdX2UKGgGaAloD0MIKJtyhXe5B8CUhpRSlGgVSzJoFkdAqGgj8pCrtHV9lChoBmgJaA9DCBWoxeBhmvO/lIaUUpRoFUsyaBZHQKhn5oFFDv51fZQoaAZoCWgPQwj9+EuL+qT7v5SGlFKUaBVLMmgWR0CoZ6jiwSrYdX2UKGgGaAloD0MI+ir52F2g/r+UhpRSlGgVSzJoFkdAqGdoUSIxg3V9lChoBmgJaA9DCHFUbqKWpv2/lIaUUpRoFUsyaBZHQKhpRBQemvZ1fZQoaAZoCWgPQwiGONbFbXT2v5SGlFKUaBVLMmgWR0CoaQajvd/KdX2UKGgGaAloD0MI12g50EPt67+UhpRSlGgVSzJoFkdAqGjJGKAJ9nV9lChoBmgJaA9DCPvo1JXP8u2/lIaUUpRoFUsyaBZHQKhoiI1LrX11fZQoaAZoCWgPQwg/x0eLM0byv5SGlFKUaBVLMmgWR0Coamm0E5hjdX2UKGgGaAloD0MIKh+CqtFr/L+UhpRSlGgVSzJoFkdAqGosSVW0Z3V9lChoBmgJaA9DCGk2j8NgPvi/lIaUUpRoFUsyaBZHQKhp7ubZvk11fZQoaAZoCWgPQwgqVaLsLSX1v5SGlFKUaBVLMmgWR0Coaa6IFeOXdX2UKGgGaAloD0MI1QRR9wHI9b+UhpRSlGgVSzJoFkdAqGuE/8l5W3V9lChoBmgJaA9DCAgcCTTY1P6/lIaUUpRoFUsyaBZHQKhrR3j+7191fZQoaAZoCWgPQwjgSnZsBOIBwJSGlFKUaBVLMmgWR0CoawnTI/7jdX2UKGgGaAloD0MI+MWlKm1RB8CUhpRSlGgVSzJoFkdAqGrJRVIZqHV9lChoBmgJaA9DCEGbHD7pBAvAlIaUUpRoFUsyaBZHQKhspm1YyO91fZQoaAZoCWgPQwi/fogNFs7+v5SGlFKUaBVLMmgWR0CobGkLx7RfdX2UKGgGaAloD0MIjSrDuBsEA8CUhpRSlGgVSzJoFkdAqGwraIvalHV9lChoBmgJaA9DCExTBDi9S/S/lIaUUpRoFUsyaBZHQKhr6swtapx1ZS4="
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
|
|
69 |
"ent_coef": 0.0,
|
70 |
"vf_coef": 0.5,
|
71 |
"max_grad_norm": 0.5,
|
72 |
+
"normalize_advantage": false,
|
73 |
+
"observation_space": {
|
74 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
75 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
76 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
77 |
+
"_shape": null,
|
78 |
+
"dtype": null,
|
79 |
+
"_np_random": null
|
80 |
+
},
|
81 |
+
"action_space": {
|
82 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
83 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
84 |
+
"dtype": "float32",
|
85 |
+
"_shape": [
|
86 |
+
3
|
87 |
+
],
|
88 |
+
"low": "[-1. -1. -1.]",
|
89 |
+
"high": "[1. 1. 1.]",
|
90 |
+
"bounded_below": "[ True True True]",
|
91 |
+
"bounded_above": "[ True True True]",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 4
|
95 |
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44734
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e02abbb58b67ce530f5d3ffb131d2e245038d2cb1dd0f270d4538fe3e00c125b
|
3 |
size 44734
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 46014
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6015551271290932b41bb6ec5ce717001e7aa7bbd4587c49bfa2eccba2f1d0d9
|
3 |
size 46014
|
a2c-PandaReachDense-v2/system_info.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
-
- OS: Linux-5.10.147+-x86_64-with-glibc2.
|
2 |
-
- Python: 3.
|
3 |
-
- Stable-Baselines3: 1.
|
4 |
-
- PyTorch:
|
5 |
- GPU Enabled: True
|
6 |
- Numpy: 1.22.4
|
7 |
- Gym: 0.21.0
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
- GPU Enabled: True
|
6 |
- Numpy: 1.22.4
|
7 |
- Gym: 0.21.0
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f133daac4c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f133daa3de0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677409948759868690, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAeCnPPkS6DD1z5xg/eCnPPkS6DD1z5xg/eCnPPkS6DD1z5xg/eCnPPkS6DD1z5xg/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAYgovP22dkz8w18q+bvhdPzgCzj8y9Im9S15BP+pOnD9py82+gMe7PvcAvb3rPi6/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB4Kc8+RLoMPXPnGD9JtIC7VZSdOhGKpDx4Kc8+RLoMPXPnGD9JtIC7VZSdOhGKpDx4Kc8+RLoMPXPnGD9JtIC7VZSdOhGKpDx4Kc8+RLoMPXPnGD9JtIC7VZSdOhGKpDyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.40461326 0.03435732 0.59728163]\n [0.40461326 0.03435732 0.59728163]\n [0.40461326 0.03435732 0.59728163]\n [0.40461326 0.03435732 0.59728163]]", "desired_goal": "[[ 0.6837522 1.1532418 -0.396173 ]\n [ 0.867072 1.6094427 -0.0673603 ]\n [ 0.75534505 1.2211583 -0.40194252]\n [ 0.36675644 -0.092287 -0.68064755]]", "observation": "[[ 0.40461326 0.03435732 0.59728163 -0.00392774 0.00120224 0.02008537]\n [ 0.40461326 0.03435732 0.59728163 -0.00392774 0.00120224 0.02008537]\n [ 0.40461326 0.03435732 0.59728163 -0.00392774 0.00120224 0.02008537]\n [ 0.40461326 0.03435732 0.59728163 -0.00392774 0.00120224 0.02008537]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAzaZWPbJ47j0R6hY+S1aGPRTf5b0keB49MNCVPZ+00D1c5QU+gTmqPWG9tDwo6ZM+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.05240517 0.11644115 0.14737727]\n [ 0.06559428 -0.11224189 0.03868879]\n [ 0.07315099 0.10190701 0.13075775]\n [ 0.08311749 0.02206296 0.28888822]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIqHLaU3KuCsCUhpRSlIwBbJRLMowBdJRHQKbheloDgZV1fZQoaAZoCWgPQwgLmMCtu9kHwJSGlFKUaBVLMmgWR0Cm4SPGQ0XQdX2UKGgGaAloD0MIZmmn5nKDA8CUhpRSlGgVSzJoFkdApuDJWV/tpnV9lChoBmgJaA9DCA2MvKyJxQjAlIaUUpRoFUsyaBZHQKbgcKUmlZZ1fZQoaAZoCWgPQwiw5CoWvykIwJSGlFKUaBVLMmgWR0Cm4zqoQ4CIdX2UKGgGaAloD0MIv9L58CzxEcCUhpRSlGgVSzJoFkdApuLkVWS2Y3V9lChoBmgJaA9DCBq/8EqS5wnAlIaUUpRoFUsyaBZHQKbiikpI+W51fZQoaAZoCWgPQwhoBYasbhUGwJSGlFKUaBVLMmgWR0Cm4jGYrrgPdX2UKGgGaAloD0MIVz82yY/YCsCUhpRSlGgVSzJoFkdApuSXTPSlWXV9lChoBmgJaA9DCE+w/zo3bQXAlIaUUpRoFUsyaBZHQKbkP+AmReV1fZQoaAZoCWgPQwiNJ4I4DycKwJSGlFKUaBVLMmgWR0Cm4+RUWEbpdX2UKGgGaAloD0MIFjPC24NQCcCUhpRSlGgVSzJoFkdApuOLCm/Fi3V9lChoBmgJaA9DCEn0Morl9gLAlIaUUpRoFUsyaBZHQKbloDSw4bV1fZQoaAZoCWgPQwi6u86G/AMSwJSGlFKUaBVLMmgWR0Cm5UiD/VAidX2UKGgGaAloD0MIHERrRZujDMCUhpRSlGgVSzJoFkdApuTtRYRuj3V9lChoBmgJaA9DCLCNeLKbORbAlIaUUpRoFUsyaBZHQKbklCKJl8R1fZQoaAZoCWgPQwj76T9rfqwUwJSGlFKUaBVLMmgWR0Cm5rJkf9xZdX2UKGgGaAloD0MI4zYawFsAC8CUhpRSlGgVSzJoFkdApuZa3ocJdHV9lChoBmgJaA9DCA38qIb9Pg7AlIaUUpRoFUsyaBZHQKbl/2exwAF1fZQoaAZoCWgPQwhMw/ARMWUHwJSGlFKUaBVLMmgWR0Cm5aZBsyi3dX2UKGgGaAloD0MIMUPjiSDuAcCUhpRSlGgVSzJoFkdApufUMCtA9nV9lChoBmgJaA9DCN/7G7RXXx3AlIaUUpRoFUsyaBZHQKbnfK28Zk11fZQoaAZoCWgPQwhxWBr4Uc0HwJSGlFKUaBVLMmgWR0Cm5yGNJe3QdX2UKGgGaAloD0MIURa+vtbVGMCUhpRSlGgVSzJoFkdApubIokRjBnV9lChoBmgJaA9DCJmAXyNJkATAlIaUUpRoFUsyaBZHQKbo2yP+4sp1fZQoaAZoCWgPQwjLgLOULEcJwJSGlFKUaBVLMmgWR0Cm6IOUdJardX2UKGgGaAloD0MI8nhafuAKGMCUhpRSlGgVSzJoFkdApugoNqgyunV9lChoBmgJaA9DCGVR2EXRIwDAlIaUUpRoFUsyaBZHQKbnzy7wrlN1fZQoaAZoCWgPQwi/u5UlOqsPwJSGlFKUaBVLMmgWR0Cm6etSqEOBdX2UKGgGaAloD0MIM/lmmxtzB8CUhpRSlGgVSzJoFkdApumTy4FzMnV9lChoBmgJaA9DCFTkEHFzGhDAlIaUUpRoFUsyaBZHQKbpOIJqqOt1fZQoaAZoCWgPQwii0LLuH6sNwJSGlFKUaBVLMmgWR0Cm6N9bgTAWdX2UKGgGaAloD0MIfjhIiPJlCMCUhpRSlGgVSzJoFkdApusAdhiLEXV9lChoBmgJaA9DCNfZkH9msArAlIaUUpRoFUsyaBZHQKbqqOOKfnR1fZQoaAZoCWgPQwiDFadaCwMdwJSGlFKUaBVLMmgWR0Cm6k2U8mrsdX2UKGgGaAloD0MIT6xT5XvmBsCUhpRSlGgVSzJoFkdApun1CRfWtnV9lChoBmgJaA9DCHEceLXcORTAlIaUUpRoFUsyaBZHQKbsCIPbwjN1fZQoaAZoCWgPQwiyZmSQuwj/v5SGlFKUaBVLMmgWR0Cm67E1uR9xdX2UKGgGaAloD0MIprbUQV6vAcCUhpRSlGgVSzJoFkdAputVxsEaEXV9lChoBmgJaA9DCK+w4H7AgwnAlIaUUpRoFUsyaBZHQKbq/IBikO91fZQoaAZoCWgPQwgTRUjdzh4IwJSGlFKUaBVLMmgWR0Cm7RrFGXoldX2UKGgGaAloD0MIiXlW0oqvAMCUhpRSlGgVSzJoFkdApuzDCcf/3nV9lChoBmgJaA9DCGechqjCnwvAlIaUUpRoFUsyaBZHQKbsZ6/IsAh1fZQoaAZoCWgPQwjyfXGpSrsLwJSGlFKUaBVLMmgWR0Cm7A6aTfSAdX2UKGgGaAloD0MI7nppigAHAMCUhpRSlGgVSzJoFkdApu4ksH0K7nV9lChoBmgJaA9DCA+3Q8NilA/AlIaUUpRoFUsyaBZHQKbtzSYPXkJ1fZQoaAZoCWgPQwim0eRiDEwFwJSGlFKUaBVLMmgWR0Cm7XKpLmITdX2UKGgGaAloD0MIrwrUYvAwCMCUhpRSlGgVSzJoFkdApu0ZnnMdLnV9lChoBmgJaA9DCGPQCaGDzgTAlIaUUpRoFUsyaBZHQKbvMcEvCdl1fZQoaAZoCWgPQwhb7swEw5kYwJSGlFKUaBVLMmgWR0Cm7tpLmITHdX2UKGgGaAloD0MIy4XKv5aXBcCUhpRSlGgVSzJoFkdApu5+5Yoy9HV9lChoBmgJaA9DCGnJ42n5IQ7AlIaUUpRoFUsyaBZHQKbuJdcjZ+R1fZQoaAZoCWgPQwg41zBD40kGwJSGlFKUaBVLMmgWR0Cm8DTlkpZwdX2UKGgGaAloD0MI2xX6YBkrEsCUhpRSlGgVSzJoFkdApu/dZ3cHnnV9lChoBmgJaA9DCBSTN8DMlwfAlIaUUpRoFUsyaBZHQKbvgjfNzKd1fZQoaAZoCWgPQwjsFRbcDxgIwJSGlFKUaBVLMmgWR0Cm7ykGJN0vdX2UKGgGaAloD0MIfCqnPSWHDcCUhpRSlGgVSzJoFkdApvE2ys0YTHV9lChoBmgJaA9DCB5uh4bFaAfAlIaUUpRoFUsyaBZHQKbw33rUsnR1fZQoaAZoCWgPQwivQspPqp0UwJSGlFKUaBVLMmgWR0Cm8IQ7cO9WdX2UKGgGaAloD0MIllmEYiuIEcCUhpRSlGgVSzJoFkdApvArH4oJA3V9lChoBmgJaA9DCEgyq3e4/Q3AlIaUUpRoFUsyaBZHQKbyQPzWf9R1fZQoaAZoCWgPQwhXCRaHMz8PwJSGlFKUaBVLMmgWR0Cm8emc4HX3dX2UKGgGaAloD0MIYr8n1qkiFMCUhpRSlGgVSzJoFkdApvGOaQV9GHV9lChoBmgJaA9DCM1YNJ2djATAlIaUUpRoFUsyaBZHQKbxNUvwmVt1fZQoaAZoCWgPQwirPeyFAtYHwJSGlFKUaBVLMmgWR0Cm80kl3QlbdX2UKGgGaAloD0MI2SYVjbXfDcCUhpRSlGgVSzJoFkdApvLxpeu3dHV9lChoBmgJaA9DCMlaQ6m9+BHAlIaUUpRoFUsyaBZHQKbyljEvTPV1fZQoaAZoCWgPQwgsuvWaHjQLwJSGlFKUaBVLMmgWR0Cm8j0Xxe9jdX2UKGgGaAloD0MIG2ZoPBGkDMCUhpRSlGgVSzJoFkdApvRPCQ9zO3V9lChoBmgJaA9DCCcxCKwcOhLAlIaUUpRoFUsyaBZHQKbz93ztkWh1fZQoaAZoCWgPQwhpVyHlJ7UEwJSGlFKUaBVLMmgWR0Cm85wRXfZVdX2UKGgGaAloD0MIPWAeMuVDC8CUhpRSlGgVSzJoFkdApvNC3kPtlnV9lChoBmgJaA9DCKp+pfPhGQrAlIaUUpRoFUsyaBZHQKb1V6dlNDd1fZQoaAZoCWgPQwjYRGYucJkOwJSGlFKUaBVLMmgWR0Cm9QAmAskIdX2UKGgGaAloD0MIXMmOjUDcCsCUhpRSlGgVSzJoFkdApvSk7+1jRXV9lChoBmgJaA9DCAg57//jBAfAlIaUUpRoFUsyaBZHQKb0S+XZ5A11fZQoaAZoCWgPQwiyYrg6ACIIwJSGlFKUaBVLMmgWR0Cm9ljFqBVddX2UKGgGaAloD0MIM6mhDcDmA8CUhpRSlGgVSzJoFkdApvYBQHiWFHV9lChoBmgJaA9DCMPxfAbU+xTAlIaUUpRoFUsyaBZHQKb1pbs4T9N1fZQoaAZoCWgPQwhzaJHtfF8JwJSGlFKUaBVLMmgWR0Cm9Uyp71IzdX2UKGgGaAloD0MIeJeL+E7MBsCUhpRSlGgVSzJoFkdApvd7J8v25HV9lChoBmgJaA9DCMCy0qQUpBLAlIaUUpRoFUsyaBZHQKb3I8lHBk91fZQoaAZoCWgPQwhjJlEv+MQRwJSGlFKUaBVLMmgWR0Cm9si1y/9HdX2UKGgGaAloD0MIp5at9UXiBcCUhpRSlGgVSzJoFkdApvZvvBrN4nV9lChoBmgJaA9DCELr4ctEQRXAlIaUUpRoFUsyaBZHQKb43I4lyBF1fZQoaAZoCWgPQwgvFRvzOvIXwJSGlFKUaBVLMmgWR0Cm+IWqT8pDdX2UKGgGaAloD0MIigPo9/37EcCUhpRSlGgVSzJoFkdApvgqwD/2kHV9lChoBmgJaA9DCODYs+cytQTAlIaUUpRoFUsyaBZHQKb30c0+C9R1fZQoaAZoCWgPQwhWuOUjKekNwJSGlFKUaBVLMmgWR0Cm+ndb5dnkdX2UKGgGaAloD0MIMGXggJbOCcCUhpRSlGgVSzJoFkdApvogJgLJCHV9lChoBmgJaA9DCJ3zUxwHng/AlIaUUpRoFUsyaBZHQKb5xXNke6t1fZQoaAZoCWgPQwgycasgBhoNwJSGlFKUaBVLMmgWR0Cm+W0/W1+idX2UKGgGaAloD0MIAd4CCYofBMCUhpRSlGgVSzJoFkdApvwnqZ+hG3V9lChoBmgJaA9DCPg3aK8+HgjAlIaUUpRoFUsyaBZHQKb70FQEZBN1fZQoaAZoCWgPQwjFILByaDESwJSGlFKUaBVLMmgWR0Cm+3XBxgiNdX2UKGgGaAloD0MIiXrBpzn5C8CUhpRSlGgVSzJoFkdApvsdTcZccHV9lChoBmgJaA9DCGnGounspAXAlIaUUpRoFUsyaBZHQKb+CuRLbpN1fZQoaAZoCWgPQwiphZLJqf0KwJSGlFKUaBVLMmgWR0Cm/bQ0GeMAdX2UKGgGaAloD0MI7bYLzXV6DcCUhpRSlGgVSzJoFkdApv1ZvvSc9XV9lChoBmgJaA9DCMl3KXXJ+AHAlIaUUpRoFUsyaBZHQKb9AY2sJY11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f506afef280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f506afee4c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681676258815908844, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAQh25PrdWYb2UINM+Qh25PrdWYb2UINM+Qh25PrdWYb2UINM+Qh25PrdWYb2UINM+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAncvAvz8ymb5Ft42+nHqQv23i2L8cG4G+kyYiPs5Ps7/gyzW/4sP6Pjac477mr2S+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABCHbk+t1ZhvZQg0z7jZlw8tw8AvELpgTdCHbk+t1ZhvZQg0z7jZlw8tw8AvELpgTdCHbk+t1ZhvZQg0z7jZlw8tw8AvELpgTdCHbk+t1ZhvZQg0z7jZlw8tw8AvELpgTeUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.36155134 -0.05501434 0.41235793]\n [ 0.36155134 -0.05501434 0.41235793]\n [ 0.36155134 -0.05501434 0.41235793]\n [ 0.36155134 -0.05501434 0.41235793]]", "desired_goal": "[[-1.5062138 -0.29921147 -0.27678886]\n [-1.1287417 -1.69441 -0.25215995]\n [ 0.15835027 -1.400873 -0.71014214]\n [ 0.48977572 -0.44455117 -0.22332725]]", "observation": "[[ 3.61551344e-01 -5.50143383e-02 4.12357926e-01 1.34522645e-02\n -7.81624671e-03 1.54866175e-05]\n [ 3.61551344e-01 -5.50143383e-02 4.12357926e-01 1.34522645e-02\n -7.81624671e-03 1.54866175e-05]\n [ 3.61551344e-01 -5.50143383e-02 4.12357926e-01 1.34522645e-02\n -7.81624671e-03 1.54866175e-05]\n [ 3.61551344e-01 -5.50143383e-02 4.12357926e-01 1.34522645e-02\n -7.81624671e-03 1.54866175e-05]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAjUubPGR0hr35GEA+g79hPWJBv7386pE+33ZQvQ6CwLzpnIg9CY4DvhDXQ709bmQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.01895692 -0.06565168 0.18759526]\n [ 0.05511428 -0.09338643 0.2849959 ]\n [-0.05089461 -0.02349951 0.06670553]\n [-0.12847151 -0.04781252 0.22307678]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIS7GjcajfAcCUhpRSlIwBbJRLMowBdJRHQKhNKW+oLoh1fZQoaAZoCWgPQwjk9zb92Y/hv5SGlFKUaBVLMmgWR0CoTOwAlv61dX2UKGgGaAloD0MI5/up8dLN87+UhpRSlGgVSzJoFkdAqEyuY+jdpXV9lChoBmgJaA9DCPBRf73CAuu/lIaUUpRoFUsyaBZHQKhMbcB2fTV1fZQoaAZoCWgPQwhiLxSwHYwAwJSGlFKUaBVLMmgWR0CoTlwS8J2MdX2UKGgGaAloD0MIUgslk1O7/7+UhpRSlGgVSzJoFkdAqE4fHLida3V9lChoBmgJaA9DCLDkKha/qf6/lIaUUpRoFUsyaBZHQKhN4ZXMhX91fZQoaAZoCWgPQwjQK556pMH0v5SGlFKUaBVLMmgWR0CoTaD8DSw4dX2UKGgGaAloD0MIluttMxVi+L+UhpRSlGgVSzJoFkdAqE+sINVinnV9lChoBmgJaA9DCBQhdTv76gfAlIaUUpRoFUsyaBZHQKhPbqwhW5p1fZQoaAZoCWgPQwiA12fO+lT2v5SGlFKUaBVLMmgWR0CoTzHcclw+dX2UKGgGaAloD0MISUvl7Qgn/b+UhpRSlGgVSzJoFkdAqE7xYDDCQHV9lChoBmgJaA9DCL4Ts14MpfG/lIaUUpRoFUsyaBZHQKhQxPTG5tp1fZQoaAZoCWgPQwgQkgVM4FYFwJSGlFKUaBVLMmgWR0CoUId38n/ldX2UKGgGaAloD0MIJUBNLVvr+b+UhpRSlGgVSzJoFkdAqFBJ13dKunV9lChoBmgJaA9DCMQKt3wkZf2/lIaUUpRoFUsyaBZHQKhQCVNYbKl1fZQoaAZoCWgPQwi0dtuF5rrpv5SGlFKUaBVLMmgWR0CoUd9PLxI8dX2UKGgGaAloD0MItp22RgSDAcCUhpRSlGgVSzJoFkdAqFGhyuIRAnV9lChoBmgJaA9DCK+zIf/MoATAlIaUUpRoFUsyaBZHQKhRZCuU2UB1fZQoaAZoCWgPQwil942vPTPxv5SGlFKUaBVLMmgWR0CoUSOK4x1xdX2UKGgGaAloD0MIu2JGeHuQ77+UhpRSlGgVSzJoFkdAqFL/q5byH3V9lChoBmgJaA9DCB8uOe6UzgnAlIaUUpRoFUsyaBZHQKhSwiUxEfF1fZQoaAZoCWgPQwjEBaBRurT8v5SGlFKUaBVLMmgWR0CoUoR/d69kdX2UKGgGaAloD0MIqn8QyZAj97+UhpRSlGgVSzJoFkdAqFJD5Kvmo3V9lChoBmgJaA9DCGB2Tx4W6uu/lIaUUpRoFUsyaBZHQKhUIIsyzol1fZQoaAZoCWgPQwiz0qQUdLvzv5SGlFKUaBVLMmgWR0CoU+LNwBHTdX2UKGgGaAloD0MIz04GR8kr9r+UhpRSlGgVSzJoFkdAqFOlNahYeXV9lChoBmgJaA9DCOpae5+qAgfAlIaUUpRoFUsyaBZHQKhTZK0UoKF1fZQoaAZoCWgPQwhh4/p3fUYHwJSGlFKUaBVLMmgWR0CoVTv4/NaAdX2UKGgGaAloD0MIu+8YHvvZ77+UhpRSlGgVSzJoFkdAqFT+d7OVxHV9lChoBmgJaA9DCLN9yFuu3gTAlIaUUpRoFUsyaBZHQKhUwNWEK3N1fZQoaAZoCWgPQwgroib6fBQAwJSGlFKUaBVLMmgWR0CoVIBIe5nUdX2UKGgGaAloD0MIlGjJ42lZAcCUhpRSlGgVSzJoFkdAqFZuRLbpNnV9lChoBmgJaA9DCNulDYelIQvAlIaUUpRoFUsyaBZHQKhWMKGcnVp1fZQoaAZoCWgPQwg3/686cmQAwJSGlFKUaBVLMmgWR0CoVfLgflp5dX2UKGgGaAloD0MIu7n4255g97+UhpRSlGgVSzJoFkdAqFWyFj/dZnV9lChoBmgJaA9DCFLuPsdHC/e/lIaUUpRoFUsyaBZHQKhXgx20Re11fZQoaAZoCWgPQwgyyF2EKaoHwJSGlFKUaBVLMmgWR0CoV0Wk8A7xdX2UKGgGaAloD0MIcJS8OsegAcCUhpRSlGgVSzJoFkdAqFcH003wTnV9lChoBmgJaA9DCNOFWP0RRvi/lIaUUpRoFUsyaBZHQKhWxzVc2R91fZQoaAZoCWgPQwhF2PD0Sln2v5SGlFKUaBVLMmgWR0CoWMbSZ0CBdX2UKGgGaAloD0MI0lRP5h/dC8CUhpRSlGgVSzJoFkdAqFiJbjcVQHV9lChoBmgJaA9DCBu4A3XKo/+/lIaUUpRoFUsyaBZHQKhYTLdvbXZ1fZQoaAZoCWgPQwhAvoQKDo8AwJSGlFKUaBVLMmgWR0CoWAwpON5udX2UKGgGaAloD0MIoE/kSdJVBsCUhpRSlGgVSzJoFkdAqFns1Q66rnV9lChoBmgJaA9DCBPXMa64+PO/lIaUUpRoFUsyaBZHQKhZr2/SH/N1fZQoaAZoCWgPQwgk7UYf84EJwJSGlFKUaBVLMmgWR0CoWXHo5ggHdX2UKGgGaAloD0MIvVZCd0ncAsCUhpRSlGgVSzJoFkdAqFkxeHBUJnV9lChoBmgJaA9DCLIOR1fpTgHAlIaUUpRoFUsyaBZHQKhbDteD3/R1fZQoaAZoCWgPQwjEz38PXrvjv5SGlFKUaBVLMmgWR0CoWtFijL0SdX2UKGgGaAloD0MIgA9eu7Sh8b+UhpRSlGgVSzJoFkdAqFqTp7kXDXV9lChoBmgJaA9DCCB8KNGShwPAlIaUUpRoFUsyaBZHQKhaUxbjcVR1fZQoaAZoCWgPQwhs7BLVW0P7v5SGlFKUaBVLMmgWR0CoXCLeyiVTdX2UKGgGaAloD0MI06QUdHsJ8L+UhpRSlGgVSzJoFkdAqFvliay8jHV9lChoBmgJaA9DCDqSy39IPwPAlIaUUpRoFUsyaBZHQKhbp9QXQ+l1fZQoaAZoCWgPQwinkZbK2xHtv5SGlFKUaBVLMmgWR0CoW2dH+ZPVdX2UKGgGaAloD0MIPdaMDHLXAcCUhpRSlGgVSzJoFkdAqF1EyWRigHV9lChoBmgJaA9DCO56aYoAp+K/lIaUUpRoFUsyaBZHQKhdBzq8lHB1fZQoaAZoCWgPQwjPh2cJMoL3v5SGlFKUaBVLMmgWR0CoXMmB4D9wdX2UKGgGaAloD0MIR+NQvws7AsCUhpRSlGgVSzJoFkdAqFyI4VARkHV9lChoBmgJaA9DCGzOwTOhSf6/lIaUUpRoFUsyaBZHQKhex02cawV1fZQoaAZoCWgPQwhH5/wUxwHzv5SGlFKUaBVLMmgWR0CoXoqkuYhMdX2UKGgGaAloD0MIj8TL07ki9L+UhpRSlGgVSzJoFkdAqF5N47ihnXV9lChoBmgJaA9DCD56w33klgDAlIaUUpRoFUsyaBZHQKheDiVB2Oh1fZQoaAZoCWgPQwjlCu9yEb8GwJSGlFKUaBVLMmgWR0CoYJnh86V/dX2UKGgGaAloD0MIuLHZkeo79b+UhpRSlGgVSzJoFkdAqGBdNnGsFXV9lChoBmgJaA9DCG1YU1kUdgLAlIaUUpRoFUsyaBZHQKhgIHIp6Qh1fZQoaAZoCWgPQwgAVkeOdAbwv5SGlFKUaBVLMmgWR0CoX+DjJdSmdX2UKGgGaAloD0MIPBVwz/Nn/7+UhpRSlGgVSzJoFkdAqGJ9Drqt5nV9lChoBmgJaA9DCG0Dd6BOmQLAlIaUUpRoFUsyaBZHQKhiQKpDNQl1fZQoaAZoCWgPQwglsaTcfQ70v5SGlFKUaBVLMmgWR0CoYgQhGH58dX2UKGgGaAloD0MIoQ+WsaHb/b+UhpRSlGgVSzJoFkdAqGHEg8r7O3V9lChoBmgJaA9DCDKwjuOHivu/lIaUUpRoFUsyaBZHQKhkYnOSntR1fZQoaAZoCWgPQwgxCoLHt7f8v5SGlFKUaBVLMmgWR0CoZCXirDIjdX2UKGgGaAloD0MIpmJjXkfc+7+UhpRSlGgVSzJoFkdAqGPpNoJzDHV9lChoBmgJaA9DCEs6ysFsQve/lIaUUpRoFUsyaBZHQKhjqWRigCh1fZQoaAZoCWgPQwiR7ucU5OcIwJSGlFKUaBVLMmgWR0CoZkTU7Sy/dX2UKGgGaAloD0MIzeodbofG9r+UhpRSlGgVSzJoFkdAqGYIVEd/8XV9lChoBmgJaA9DCD+PUZ55+fu/lIaUUpRoFUsyaBZHQKhly46wMYx1fZQoaAZoCWgPQwgOhGQBE7gNwJSGlFKUaBVLMmgWR0CoZYvq1PWQdX2UKGgGaAloD0MIKJtyhXe5B8CUhpRSlGgVSzJoFkdAqGgj8pCrtHV9lChoBmgJaA9DCBWoxeBhmvO/lIaUUpRoFUsyaBZHQKhn5oFFDv51fZQoaAZoCWgPQwj9+EuL+qT7v5SGlFKUaBVLMmgWR0CoZ6jiwSrYdX2UKGgGaAloD0MI+ir52F2g/r+UhpRSlGgVSzJoFkdAqGdoUSIxg3V9lChoBmgJaA9DCHFUbqKWpv2/lIaUUpRoFUsyaBZHQKhpRBQemvZ1fZQoaAZoCWgPQwiGONbFbXT2v5SGlFKUaBVLMmgWR0CoaQajvd/KdX2UKGgGaAloD0MI12g50EPt67+UhpRSlGgVSzJoFkdAqGjJGKAJ9nV9lChoBmgJaA9DCPvo1JXP8u2/lIaUUpRoFUsyaBZHQKhoiI1LrX11fZQoaAZoCWgPQwg/x0eLM0byv5SGlFKUaBVLMmgWR0Coamm0E5hjdX2UKGgGaAloD0MIKh+CqtFr/L+UhpRSlGgVSzJoFkdAqGosSVW0Z3V9lChoBmgJaA9DCGk2j8NgPvi/lIaUUpRoFUsyaBZHQKhp7ubZvk11fZQoaAZoCWgPQwgqVaLsLSX1v5SGlFKUaBVLMmgWR0Coaa6IFeOXdX2UKGgGaAloD0MI1QRR9wHI9b+UhpRSlGgVSzJoFkdAqGuE/8l5W3V9lChoBmgJaA9DCAgcCTTY1P6/lIaUUpRoFUsyaBZHQKhrR3j+7191fZQoaAZoCWgPQwjgSnZsBOIBwJSGlFKUaBVLMmgWR0CoawnTI/7jdX2UKGgGaAloD0MI+MWlKm1RB8CUhpRSlGgVSzJoFkdAqGrJRVIZqHV9lChoBmgJaA9DCEGbHD7pBAvAlIaUUpRoFUsyaBZHQKhspm1YyO91fZQoaAZoCWgPQwi/fogNFs7+v5SGlFKUaBVLMmgWR0CobGkLx7RfdX2UKGgGaAloD0MIjSrDuBsEA8CUhpRSlGgVSzJoFkdAqGwraIvalHV9lChoBmgJaA9DCExTBDi9S/S/lIaUUpRoFUsyaBZHQKhr6swtapx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -2.337086148560047, "std_reward": 0.7039098976037863, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-16T21:10:24.354050"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e6623fcd1249169171f16a579246cf92c1d321768af86b8db40b9433790377f1
|
3 |
+
size 2381
|