# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. + Abstract Engine. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from transformers import PretrainedConfig, CLIPVisionConfig, SiglipTextConfig class MitsuaJapaneseCLIPConfig(PretrainedConfig): model_type = "mitsua_japanese_clip" def __init__( self, text_config=None, vision_config=None, projection_dim=512, logit_scale_init_value=2.6592, **kwargs, ): super().__init__(**kwargs) if text_config is None: text_config = {} if vision_config is None: vision_config = {} self.vision_config = CLIPVisionConfig(**vision_config) self.text_config = SiglipTextConfig(**text_config) self.projection_dim = projection_dim self.logit_scale_init_value = logit_scale_init_value self.initializer_factor = 1.0 @classmethod def from_vision_text_configs( cls, vision_config: PretrainedConfig, text_config: PretrainedConfig, **kwargs ): r""" Instantiate a [`VisionTextDualEncoderConfig`] (or a derived class) from text model configuration and vision model configuration. Returns: [`VisionTextDualEncoderConfig`]: An instance of a configuration object """ return cls( vision_config=vision_config.to_dict(), text_config=text_config.to_dict(), **kwargs, )