lrl-modelcloud
commited on
Commit
β’
90537f1
1
Parent(s):
62c1b05
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- gptq
|
4 |
+
- 4bit
|
5 |
+
- int4
|
6 |
+
- gptqmodel
|
7 |
+
- modelcloud
|
8 |
+
---
|
9 |
+
This model has been quantized using [GPTQModel](https://github.com/ModelCloud/GPTQModel).
|
10 |
+
|
11 |
+
- **bits**: 4
|
12 |
+
- **group_size**: 128
|
13 |
+
- **desc_act**: true
|
14 |
+
- **static_groups**: false
|
15 |
+
- **sym**: false
|
16 |
+
- **lm_head**: false
|
17 |
+
- **damp_percent**: 0.0025
|
18 |
+
- **damp_auto_increment**: 0.0015
|
19 |
+
- **true_sequential**: true
|
20 |
+
- **model_name_or_path**: ""
|
21 |
+
- **model_file_base_name**: "model"
|
22 |
+
- **quant_method**: "gptq"
|
23 |
+
- **checkpoint_format**: "gptq"
|
24 |
+
- **meta**οΌ
|
25 |
+
- **quantizer**: "gptqmodel:1.0.3-dev0"
|
26 |
+
|
27 |
+
## Example:
|
28 |
+
```python
|
29 |
+
from transformers import AutoTokenizer
|
30 |
+
from gptqmodel import GPTQModel
|
31 |
+
|
32 |
+
model_name = "ModelCloud/GRIN-MoE-gptq-4bit"
|
33 |
+
|
34 |
+
prompt = [
|
35 |
+
{"role": "system",
|
36 |
+
"content": "You are GRIN-MoE model from microsoft, a helpful assistant."},
|
37 |
+
{"role": "user", "content": "I am in Shanghai, preparing to visit the natural history museum. Can you tell me the best way to"}
|
38 |
+
]
|
39 |
+
|
40 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
41 |
+
|
42 |
+
model = GPTQModel.from_quantized(model_name, trust_remote_code=True)
|
43 |
+
|
44 |
+
input_tensor = tokenizer.apply_chat_template(prompt, add_generation_prompt=True, return_tensors="pt")
|
45 |
+
outputs = model.generate(input_ids=input_tensor.to(model.device), max_new_tokens=100)
|
46 |
+
result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)
|
47 |
+
|
48 |
+
print(result)
|
49 |
+
```
|
50 |
+
|
51 |
+
## Lm_eval result:
|
52 |
+
|
53 |
+
| Tasks | Metric | | GRIN-MoE | GRIN-MoE-gptq-4bit |
|
54 |
+
| ------------------------------------- | ---------- | --- | -------- | ------------------ |
|
55 |
+
| arc_challenge | acc | β | 0.6408 | 0.6425 |
|
56 |
+
| | acc_norm | β | 0.6561 | 0.6587 |
|
57 |
+
| arc_easy | acc | β | 0.8645 | 0.8683 |
|
58 |
+
| | acc_norm | β | 0.8422 | 0.846 |
|
59 |
+
| boolq | acc | β | 0.8820 | 0.8765 |
|
60 |
+
| hellaswag | acc | β | 0.6972 | 0.6891 |
|
61 |
+
| | acc_norm | β | 0.8518 | 0.8486 |
|
62 |
+
| lambada_openai | acc | β | 0.7058 | 0.7068 |
|
63 |
+
| | perplexity | β | 3.4568 | 3.5732 |
|
64 |
+
| mmlu | acc | β | 0.7751 | 0.7706 |
|
65 |
+
| - humanities | acc | β | 0.7394 | 0.7384 |
|
66 |
+
| - formal_logic | acc | β | 0.6429 | 0.6746 |
|
67 |
+
| - high_school_european_history | acc | β | 0.8606 | 0.8364 |
|
68 |
+
| - high_school_us_history | acc | β | 0.9118 | 0.902 |
|
69 |
+
| - high_school_world_history | acc | β | 0.8903 | 0.8734 |
|
70 |
+
| - international_law | acc | β | 0.9256 | 0.9091 |
|
71 |
+
| - jurisprudence | acc | β | 0.8426 | 0.8519 |
|
72 |
+
| - logical_fallacies | acc | β | 0.8344 | 0.8528 |
|
73 |
+
| - moral_disputes | acc | β | 0.7977 | 0.8208 |
|
74 |
+
| - moral_scenarios | acc | β | 0.6961 | 0.6849 |
|
75 |
+
| - philosophy | acc | β | 0.8199 | 0.8071 |
|
76 |
+
| - prehistory | acc | β | 0.8457 | 0.8426 |
|
77 |
+
| - professional_law | acc | β | 0.6173 | 0.6193 |
|
78 |
+
| - world_religions | acc | β | 0.8480 | 0.8655 |
|
79 |
+
| - other | acc | β | 0.8130 | 0.805 |
|
80 |
+
| - business_ethics | acc | β | 0.8100 | 0.78 |
|
81 |
+
| - clinical_knowledge | acc | β | 0.8415 | 0.8302 |
|
82 |
+
| - college_medicine | acc | β | 0.7514 | 0.7457 |
|
83 |
+
| - global_facts | acc | β | 0.5700 | 0.54 |
|
84 |
+
| - human_aging | acc | β | 0.7803 | 0.7668 |
|
85 |
+
| - management | acc | β | 0.8447 | 0.8447 |
|
86 |
+
| - marketing | acc | β | 0.9145 | 0.9103 |
|
87 |
+
| - medical_genetics | acc | β | 0.9200 | 0.89 |
|
88 |
+
| - miscellaneous | acc | β | 0.8966 | 0.8927 |
|
89 |
+
| - nutrition | acc | β | 0.8333 | 0.8268 |
|
90 |
+
| - professional_accounting | acc | β | 0.6489 | 0.656 |
|
91 |
+
| - professional_medicine | acc | β | 0.8750 | 0.8603 |
|
92 |
+
| - virology | acc | β | 0.5422 | 0.5361 |
|
93 |
+
| - social sciences | acc | β | 0.8638 | 0.8544 |
|
94 |
+
| - econometrics | acc | β | 0.5789 | 0.5789 |
|
95 |
+
| - high_school_geography | acc | β | 0.9091 | 0.8788 |
|
96 |
+
| - high_school_government_and_politics | acc | β | 0.9585 | 0.943 |
|
97 |
+
| - high_school_macroeconomics | acc | β | 0.8308 | 0.8103 |
|
98 |
+
| - high_school_microeconomics | acc | β | 0.9328 | 0.9286 |
|
99 |
+
| - high_school_psychology | acc | β | 0.9321 | 0.9303 |
|
100 |
+
| - human_sexuality | acc | β | 0.8779 | 0.8626 |
|
101 |
+
| - professional_psychology | acc | β | 0.8382 | 0.8219 |
|
102 |
+
| - public_relations | acc | β | 0.7545 | 0.7727 |
|
103 |
+
| - security_studies | acc | β | 0.7878 | 0.7918 |
|
104 |
+
| - sociology | acc | β | 0.8905 | 0.8955 |
|
105 |
+
| - us_foreign_policy | acc | β | 0.9000 | 0.88 |
|
106 |
+
| - stem | acc | β | 0.7044 | 0.7031 |
|
107 |
+
| - abstract_algebra | acc | β | 0.5000 | 0.45 |
|
108 |
+
| - anatomy | acc | β | 0.7407 | 0.7481 |
|
109 |
+
| - astronomy | acc | β | 0.8618 | 0.8618 |
|
110 |
+
| - college_biology | acc | β | 0.8889 | 0.875 |
|
111 |
+
| - college_chemistry | acc | β | 0.6100 | 0.59 |
|
112 |
+
| - college_computer_science | acc | β | 0.7100 | 0.67 |
|
113 |
+
| - college_mathematics | acc | β | 0.5100 | 0.58 |
|
114 |
+
| - college_physics | acc | β | 0.4608 | 0.4608 |
|
115 |
+
| - computer_security | acc | β | 0.8200 | 0.82 |
|
116 |
+
| - conceptual_physics | acc | β | 0.7787 | 0.766 |
|
117 |
+
| - electrical_engineering | acc | β | 0.6828 | 0.6828 |
|
118 |
+
| - elementary_mathematics | acc | β | 0.7566 | 0.7593 |
|
119 |
+
| - high_school_biology | acc | β | 0.9000 | 0.9097 |
|
120 |
+
| - high_school_chemistry | acc | β | 0.6650 | 0.665 |
|
121 |
+
| - high_school_computer_science | acc | β | 0.8700 | 0.86 |
|
122 |
+
| - high_school_mathematics | acc | β | 0.4370 | 0.4296 |
|
123 |
+
| - high_school_physics | acc | β | 0.5960 | 0.5894 |
|
124 |
+
| - high_school_statistics | acc | β | 0.7176 | 0.7222 |
|
125 |
+
| - machine_learning | acc | β | 0.6071 | 0.6339 |
|
126 |
+
| openbookqa | acc | β | 0.3920 | 0.386 |
|
127 |
+
| | acc_norm | β | 0.4900 | 0.486 |
|
128 |
+
| piqa | acc | β | 0.8183 | 0.8166 |
|
129 |
+
| | acc_norm | β | 0.8205 | 0.8177 |
|
130 |
+
| rte | acc | β | 0.8014 | 0.7834 |
|
131 |
+
| truthfulqa_mc1 | acc | β | 0.3880 | 0.399 |
|
132 |
+
| winogrande | acc | β | 0.7940 | 0.768 |
|
133 |
+
| | | | | |
|
134 |
+
| Groups | Metric | | Value | Value |
|
135 |
+
| mmlu | acc | β | 0.7751 | 0.7706 |
|
136 |
+
| - humanities | acc | β | 0.7394 | 0.7384 |
|
137 |
+
| - other | acc | β | 0.8130 | 0.805 |
|
138 |
+
| - social sciences | acc | β | 0.8638 | 0.8544 |
|
139 |
+
| - stem | acc | β | 0.7044 | 0.7031 |
|