lrl-modelcloud commited on
Commit
e4aa287
1 Parent(s): 4507947

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +47 -0
README.md ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - gptq
4
+ - 4bit
5
+ - int4
6
+ - gptqmodel
7
+ - modelcloud
8
+ - llama-3.1
9
+ - 70b
10
+ - instruct
11
+ ---
12
+ This model has been quantized using [GPTQModel](https://github.com/ModelCloud/GPTQModel).
13
+
14
+ - **bits**: 4
15
+ - **group_size**: 128
16
+ - **desc_act**: true
17
+ - **static_groups**: false
18
+ - **sym**: true
19
+ - **lm_head**: false
20
+ - **damp_percent**: 0.01
21
+ - **true_sequential**: true
22
+ - **model_name_or_path**: ""
23
+ - **model_file_base_name**: "model"
24
+ - **quant_method**: "gptq"
25
+ - **checkpoint_format**: "gptq"
26
+ - **meta**:
27
+ - **quantizer**: "gptqmodel:0.9.9-dev0"
28
+
29
+ **Here is an example:**
30
+ ```python
31
+ from transformers import AutoTokenizer
32
+ from gptqmodel import GPTQModel
33
+
34
+ model_name = "ModelCloud/Meta-Llama-3.1-70B-Instruct-gptq-4bit"
35
+
36
+ prompt = [{"role": "user", "content": "I am in Shanghai, preparing to visit the natural history museum. Can you tell me the best way to"}]
37
+
38
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
39
+
40
+ model = GPTQModel.from_quantized(model_name)
41
+
42
+ input_tensor = tokenizer.apply_chat_template(prompt, add_generation_prompt=True, return_tensors="pt")
43
+ outputs = model.generate(input_ids=input_tensor.to(model.device), max_new_tokens=100)
44
+ result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)
45
+
46
+ print(result)
47
+ ```