Upload README.md
Browse files
README.md
ADDED
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
license: llama3
|
5 |
+
library_name: transformers
|
6 |
+
tags:
|
7 |
+
- axolotl
|
8 |
+
- finetune
|
9 |
+
- dpo
|
10 |
+
- facebook
|
11 |
+
- meta
|
12 |
+
- pytorch
|
13 |
+
- llama
|
14 |
+
- llama-3
|
15 |
+
base_model: meta-llama/Meta-Llama-3-8B-Instruct
|
16 |
+
datasets:
|
17 |
+
- Intel/orca_dpo_pairs
|
18 |
+
model_name: Llama-3-8B-Instruct-DPO-v0.3
|
19 |
+
pipeline_tag: text-generation
|
20 |
+
license_name: llama3
|
21 |
+
license_link: LICENSE
|
22 |
+
inference: false
|
23 |
+
model_creator: MaziyarPanahi
|
24 |
+
quantized_by: MaziyarPanahi
|
25 |
+
model-index:
|
26 |
+
- name: Llama-3-8B-Instruct-DPO-v0.3
|
27 |
+
results:
|
28 |
+
- task:
|
29 |
+
type: text-generation
|
30 |
+
name: Text Generation
|
31 |
+
dataset:
|
32 |
+
name: AI2 Reasoning Challenge (25-Shot)
|
33 |
+
type: ai2_arc
|
34 |
+
config: ARC-Challenge
|
35 |
+
split: test
|
36 |
+
args:
|
37 |
+
num_few_shot: 25
|
38 |
+
metrics:
|
39 |
+
- type: acc_norm
|
40 |
+
value: 62.63
|
41 |
+
name: normalized accuracy
|
42 |
+
source:
|
43 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/Llama-3-8B-Instruct-DPO-v0.3
|
44 |
+
name: Open LLM Leaderboard
|
45 |
+
- task:
|
46 |
+
type: text-generation
|
47 |
+
name: Text Generation
|
48 |
+
dataset:
|
49 |
+
name: HellaSwag (10-Shot)
|
50 |
+
type: hellaswag
|
51 |
+
split: validation
|
52 |
+
args:
|
53 |
+
num_few_shot: 10
|
54 |
+
metrics:
|
55 |
+
- type: acc_norm
|
56 |
+
value: 79.2
|
57 |
+
name: normalized accuracy
|
58 |
+
source:
|
59 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/Llama-3-8B-Instruct-DPO-v0.3
|
60 |
+
name: Open LLM Leaderboard
|
61 |
+
- task:
|
62 |
+
type: text-generation
|
63 |
+
name: Text Generation
|
64 |
+
dataset:
|
65 |
+
name: MMLU (5-Shot)
|
66 |
+
type: cais/mmlu
|
67 |
+
config: all
|
68 |
+
split: test
|
69 |
+
args:
|
70 |
+
num_few_shot: 5
|
71 |
+
metrics:
|
72 |
+
- type: acc
|
73 |
+
value: 68.33
|
74 |
+
name: accuracy
|
75 |
+
source:
|
76 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/Llama-3-8B-Instruct-DPO-v0.3
|
77 |
+
name: Open LLM Leaderboard
|
78 |
+
- task:
|
79 |
+
type: text-generation
|
80 |
+
name: Text Generation
|
81 |
+
dataset:
|
82 |
+
name: TruthfulQA (0-shot)
|
83 |
+
type: truthful_qa
|
84 |
+
config: multiple_choice
|
85 |
+
split: validation
|
86 |
+
args:
|
87 |
+
num_few_shot: 0
|
88 |
+
metrics:
|
89 |
+
- type: mc2
|
90 |
+
value: 53.29
|
91 |
+
source:
|
92 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/Llama-3-8B-Instruct-DPO-v0.3
|
93 |
+
name: Open LLM Leaderboard
|
94 |
+
- task:
|
95 |
+
type: text-generation
|
96 |
+
name: Text Generation
|
97 |
+
dataset:
|
98 |
+
name: Winogrande (5-shot)
|
99 |
+
type: winogrande
|
100 |
+
config: winogrande_xl
|
101 |
+
split: validation
|
102 |
+
args:
|
103 |
+
num_few_shot: 5
|
104 |
+
metrics:
|
105 |
+
- type: acc
|
106 |
+
value: 75.37
|
107 |
+
name: accuracy
|
108 |
+
source:
|
109 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/Llama-3-8B-Instruct-DPO-v0.3
|
110 |
+
name: Open LLM Leaderboard
|
111 |
+
- task:
|
112 |
+
type: text-generation
|
113 |
+
name: Text Generation
|
114 |
+
dataset:
|
115 |
+
name: GSM8k (5-shot)
|
116 |
+
type: gsm8k
|
117 |
+
config: main
|
118 |
+
split: test
|
119 |
+
args:
|
120 |
+
num_few_shot: 5
|
121 |
+
metrics:
|
122 |
+
- type: acc
|
123 |
+
value: 70.58
|
124 |
+
name: accuracy
|
125 |
+
source:
|
126 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/Llama-3-8B-Instruct-DPO-v0.3
|
127 |
+
name: Open LLM Leaderboard
|
128 |
+
---
|
129 |
+
|
130 |
+
<img src="./llama-3-merges.webp" alt="Llama-3 DPO Logo" width="500" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
|
131 |
+
|
132 |
+
|
133 |
+
# Llama-3-8B-Instruct-DPO-v0.3 (32k)
|
134 |
+
|
135 |
+
This model is a fine-tune (DPO) of `meta-llama/Meta-Llama-3-8B-Instruct` model. I have used `rope_theta` to extend the context length up to 32K safely.
|
136 |
+
|
137 |
+
# Quantized GGUF
|
138 |
+
|
139 |
+
All GGUF models come with context length of `32000`: [Llama-3-8B-Instruct-DPO-v0.3-32k-GGUF](https://huggingface.co/MaziyarPanahi/Llama-3-8B-Instruct-DPO-v0.3-32k-GGUF)
|
140 |
+
|
141 |
+
# Prompt Template
|
142 |
+
|
143 |
+
This model uses `ChatML` prompt template:
|
144 |
+
|
145 |
+
```
|
146 |
+
<|im_start|>system
|
147 |
+
{System}
|
148 |
+
<|im_end|>
|
149 |
+
<|im_start|>user
|
150 |
+
{User}
|
151 |
+
<|im_end|>
|
152 |
+
<|im_start|>assistant
|
153 |
+
{Assistant}
|
154 |
+
````
|
155 |
+
|
156 |
+
# How to use
|
157 |
+
|
158 |
+
You can use this model by using `MaziyarPanahi/Llama-3-8B-Instruct-DPO-v0.3` as the model name in Hugging Face's
|
159 |
+
transformers library.
|
160 |
+
|
161 |
+
```python
|
162 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
|
163 |
+
from transformers import pipeline
|
164 |
+
import torch
|
165 |
+
|
166 |
+
model_id = "MaziyarPanahi/Llama-3-8B-Instruct-DPO-v0.3"
|
167 |
+
|
168 |
+
model = AutoModelForCausalLM.from_pretrained(
|
169 |
+
model_id,
|
170 |
+
torch_dtype=torch.bfloat16,
|
171 |
+
device_map="auto",
|
172 |
+
trust_remote_code=True,
|
173 |
+
# attn_implementation="flash_attention_2"
|
174 |
+
)
|
175 |
+
|
176 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
177 |
+
model_id,
|
178 |
+
trust_remote_code=True
|
179 |
+
)
|
180 |
+
|
181 |
+
streamer = TextStreamer(tokenizer)
|
182 |
+
|
183 |
+
pipeline = pipeline(
|
184 |
+
"text-generation",
|
185 |
+
model=model,
|
186 |
+
tokenizer=tokenizer,
|
187 |
+
model_kwargs={"torch_dtype": torch.bfloat16},
|
188 |
+
streamer=streamer
|
189 |
+
)
|
190 |
+
|
191 |
+
# Then you can use the pipeline to generate text.
|
192 |
+
|
193 |
+
messages = [
|
194 |
+
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
|
195 |
+
{"role": "user", "content": "Who are you?"},
|
196 |
+
]
|
197 |
+
|
198 |
+
prompt = tokenizer.apply_chat_template(
|
199 |
+
messages,
|
200 |
+
tokenize=False,
|
201 |
+
add_generation_prompt=True
|
202 |
+
)
|
203 |
+
|
204 |
+
terminators = [
|
205 |
+
tokenizer.eos_token_id,
|
206 |
+
tokenizer.convert_tokens_to_ids("<|im_end|>")
|
207 |
+
]
|
208 |
+
|
209 |
+
outputs = pipeline(
|
210 |
+
prompt,
|
211 |
+
max_new_tokens=8192,
|
212 |
+
eos_token_id=terminators,
|
213 |
+
do_sample=True,
|
214 |
+
temperature=0.6,
|
215 |
+
top_p=0.95,
|
216 |
+
)
|
217 |
+
print(outputs[0]["generated_text"][len(prompt):])
|
218 |
+
```
|
219 |
+
|
220 |
+
|
221 |
+
|
222 |
+
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
|
223 |
+
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_MaziyarPanahi__Llama-3-8B-Instruct-DPO-v0.3)
|
224 |
+
|
225 |
+
| Metric |Value|
|
226 |
+
|---------------------------------|----:|
|
227 |
+
|Avg. |68.23|
|
228 |
+
|AI2 Reasoning Challenge (25-Shot)|62.63|
|
229 |
+
|HellaSwag (10-Shot) |79.20|
|
230 |
+
|MMLU (5-Shot) |68.33|
|
231 |
+
|TruthfulQA (0-shot) |53.29|
|
232 |
+
|Winogrande (5-shot) |75.37|
|
233 |
+
|GSM8k (5-shot) |70.58|
|
234 |
+
|