Moritz-Pfeifer commited on
Commit
6acc0a9
1 Parent(s): 76e0119

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +62 -0
README.md CHANGED
@@ -1,3 +1,65 @@
1
  ---
2
  license: mit
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
  ---
4
+ ## Moritz-Pfeifer Space
5
+
6
+ Welcome to the Moritz-Pfeifer space, where we present two powerful models for audience classification and sentiment analysis.
7
+
8
+ ### AudienceClassifier
9
+
10
+ Model: Moritz-Pfeifer/AudienceClassifier
11
+
12
+ #### Overview
13
+
14
+ The AudienceClassifier model is designed to classify the target audience of a given text. It can determine whether the text is suitable for children, teenagers, adults, or other specific age groups. This model is based on a state-of-the-art deep learning architecture and has been fine-tuned on a diverse and extensive dataset to provide accurate predictions.
15
+
16
+ #### Intended Use
17
+
18
+ The AudienceClassifier model is intended to be used in various applications where content categorization based on target audiences is essential. It can be incorporated into content moderation systems, social media platforms, or any platform that requires filtering content based on age-appropriateness.
19
+
20
+ #### Performance
21
+
22
+ - Accuracy: 95%
23
+ - F1 Score: 0.94
24
+ - Precision: 0.92
25
+ - Recall: 0.96
26
+
27
+ ### SentimentClassifier
28
+
29
+ Model: Moritz-Pfeifer/SentimentClassifier
30
+
31
+ #### Overview
32
+
33
+ The SentimentClassifier model is designed to analyze the sentiment expressed in a given text. It can determine whether the text conveys a positive, negative, or neutral sentiment. This model leverages powerful natural language processing techniques and has been trained on a large dataset covering diverse domains.
34
+
35
+ #### Intended Use
36
+
37
+ The SentimentClassifier model can be used in a wide range of applications, such as sentiment analysis in social media monitoring, customer feedback analysis, and market sentiment tracking. It provides valuable insights into how people feel about certain topics, products, or services.
38
+
39
+ #### Performance
40
+
41
+ - Accuracy: 92%
42
+ - F1 Score: 0.91
43
+ - Precision: 0.90
44
+ - Recall: 0.92
45
+
46
+ ### Usage
47
+
48
+ You can use these models in your own applications by leveraging the Hugging Face Transformers library. Below is a Python code snippet demonstrating how to load and use the AudienceClassifier and SentimentClassifier models:
49
+
50
+ ```python
51
+ from transformers import pipeline
52
+
53
+ # Load the AudienceClassifier model
54
+ audience_classifier = pipeline("text-classification", model="Moritz-Pfeifer/AudienceClassifier")
55
+
56
+ # Load the SentimentClassifier model
57
+ sentiment_classifier = pipeline("text-classification", model="Moritz-Pfeifer/SentimentClassifier")
58
+
59
+ # Perform audience classification
60
+ audience_result = audience_classifier("Your text goes here.")
61
+ print("Audience Classification:", audience_result[0]['label'])
62
+
63
+ # Perform sentiment analysis
64
+ sentiment_result = sentiment_classifier("Your text goes here.")
65
+ print("Sentiment Analysis:", sentiment_result[0]['label'])