--- license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta-v3-base-zeroshot-v2.0-2024-03-21-22-15 results: [] --- # deberta-v3-base-zeroshot-v2.0-2024-03-21-22-15 This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1169 - F1 Macro: 0.5016 - F1 Micro: 0.5474 - Accuracy Balanced: 0.5434 - Accuracy: 0.5474 - Precision Macro: 0.6345 - Recall Macro: 0.5434 - Precision Micro: 0.5474 - Recall Micro: 0.5474 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | Accuracy Balanced | Accuracy | Precision Macro | Recall Macro | Precision Micro | Recall Micro | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|:-----------------:|:--------:|:---------------:|:------------:|:---------------:|:------------:| | 0.2288 | 1.0 | 27331 | 0.6189 | 0.7688 | 0.7881 | 0.7705 | 0.7881 | 0.7673 | 0.7705 | 0.7881 | 0.7881 | | 0.1559 | 2.0 | 54662 | 0.6059 | 0.7896 | 0.8082 | 0.7898 | 0.8082 | 0.7894 | 0.7898 | 0.8082 | 0.8082 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.2+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2