File size: 2,749 Bytes
1151de2
d162f88
e12c0fb
 
 
 
 
 
 
 
 
74d9e0d
 
 
 
197f75b
74d9e0d
288d09c
28d1054
5d0e2b2
8fb4b85
 
 
 
 
28d1054
8fb4b85
 
74d9e0d
 
 
288d09c
782e79c
 
d0976c7
782e79c
 
74d9e0d
 
 
288d09c
74d9e0d
3129cb0
 
74d9e0d
a591ffb
 
74d9e0d
a591ffb
74d9e0d
 
 
 
 
 
 
288d09c
74d9e0d
 
 
 
df49e8d
5d0e2b2
ada0fca
df49e8d
 
 
 
 
 
5d0e2b2
 
 
 
df49e8d
 
5d0e2b2
df49e8d
ada0fca
74d9e0d
 
5d0e2b2
b44058d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
license: mit
language:
- it
- en
library_name: transformers
tags:
- sft
- it
- mistral
- chatml
---

# Model Information

Azzurro is an updated version of [Mistral-7B-v0.2](https://huggingface.co/alpindale/Mistral-7B-v0.2-hf), specifically fine-tuned with SFT and LoRA adjustments.

- It's trained on publicly available datasets, like [SQUAD-it](https://huggingface.co/datasets/squad_it), and datasets we've created in-house.
- it's designed to understand and maintain context, making it ideal for Retrieval Augmented Generation (RAG) tasks and applications requiring contextual awareness.

# Evaluation

We evaluated the model using the same test sets as used for the Open Ita LLM Leaderboard 

| hellaswag_it acc_norm | arc_it acc_norm | m_mmlu_it 5-shot acc | Average |
|:----------------------| :--------------- | :-------------------- | :------- |
| 0.6067 | 0.4405 | 0.5112 | 0,52 |


## Usage

Be sure to have transformers and torch installed

```python
pip install transformers torch sentencepiece
```

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

device = "cuda" # change to cpu if you have no gpu

model = AutoModelForCausalLM.from_pretrained("MoxoffSpA/Azzurro")
tokenizer = AutoTokenizer.from_pretrained("MoxoffSpA/Azzurro")

prompt = "Come mi chiamo? Contesto: Esempio di contesto"

messages = [
    {"role": "user", "content": prompt}
]

encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")

model_inputs = encodeds.to(device)
model.to(device)

generated_ids = model.generate(model_inputs, max_new_tokens=250, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])
```

## Bias, Risks and Limitations

Azzurro has not been aligned to human preferences for safety within the RLHF phase or deployed with in-the-loop filtering of 
responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so). It is also unknown what the size and composition 
of the corpus was used to train the base model (mistralai/Mistral-7B-v0.2), however it is likely to have included a mix of Web data and technical sources 
like books and code.

## Links to resources

- SQUAD-it dataset: https://huggingface.co/datasets/squad_it
- Mistral_7B_v0.2 original weights: https://models.mistralcdn.com/mistral-7b-v0-2/mistral-7B-v0.2.tar
- Mistral_7B_v0.2 model: https://huggingface.co/alpindale/Mistral-7B-v0.2-hf
- Open Ita LLM Leaderbord: https://huggingface.co/spaces/FinancialSupport/open_ita_llm_leaderboard

## Quantized versions

We have published as well the 4 bit and 8 bit versions of this model:
https://huggingface.co/MoxoffSpA/AzzurroQuantized

## The Moxoff Team

Jacopo Abate, Marco D'Ambra, Luigi Simeone, Gianpaolo Francesco Trotta