--- license: apache-2.0 language: - it - en library_name: transformers tags: - sft - it - mistral - chatml --- # Model Information xxxx is a SFT and LoRA finetuned version of Mistral-7B-v0.2 It has been trained on a mixture of opensource datasets, like SQUAD-it (https://huggingface.co/datasets/squad_it), and some internally made datasets. It is not just a Q&A, it is a Q&A + Context model, with the goal being it being used for RAGs and application in need of a context. # Evaluation We evaluated the model using the same test sets as used for the Open Ita LLM Leaderboard | hellaswag_it acc_norm | arc_it acc_norm | m_mmlu_it 5-shot acc | Average | |:----------------------:| :---------------: | :--------------------: | :-------: | | 0.6067 | 0.4405 | 0.5112 | 0,52 | ## Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" model = AutoModelForCausalLM.from_pretrained("MoxoffSpA/xxxx") tokenizer = AutoTokenizer.from_pretrained("MoxoffSpA/xxxx") question = """Quanto è alta la torre di Pisa?""" context = """ La Torre di Pisa è un campanile del XII secolo, famoso per la sua inclinazione. Alta circa 56 metri. """ prompt = f"Rispondi alla seguente domanda con meno parle possibili basandoti sul contesto fornito. Domanda: {question}, contesto: {context}" messages = [ {"role": "user", "content": prompt}, ] encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt") model_inputs = encodeds.to(device) model.to(device) generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True) decoded = tokenizer.batch_decode(generated_ids) print(decoded[0]) ``` ## The Moxoff Team Marco D'Ambra, Jacopo Abate, Gianpaolo Francesco Trotta