""" This training script can be run both on a single gpu in debug mode, and also in a larger training run with distributed data parallel (ddp). To run on a single GPU small debug run, example: $ python -m train.py --compile=False --eval_iters=10 --batch_size=8 To run with DDP on 4 gpus on 1 node, example: $ torchrun --standalone --nproc_per_node=4 train.py To run with DDP on 4 gpus across 2 nodes, example: - Run on the first (master) node with example IP 123.456.123.456: $ torchrun --nproc_per_node=8 --nnodes=2 --node_rank=0 --master_addr=123.456.123.456 --master_port=1234 train.py - Run on the worker node: $ torchrun --nproc_per_node=8 --nnodes=2 --node_rank=1 --master_addr=123.456.123.456 --master_port=1234 train.py (If your cluster does not have Infiniband interconnect prepend NCCL_IB_DISABLE=1) """ import math import os import time from contextlib import nullcontext from datetime import datetime from functools import partial import inspect import torch from torch.distributed import destroy_process_group, init_process_group from torch.nn.parallel import DistributedDataParallel as DDP from tinystories import Task from model import MambaLMHeadModel # ----------------------------------------------------------------------------- # I/O out_dir = "out/768-8" eval_interval = 2000 log_interval = 1 eval_iters = 100 eval_only = False # if True, script exits right after the first eval always_save_checkpoint = True # if True, always save a checkpoint after each eval init_from = "resume" # 'scratch' or 'resume' # wandb logging wandb_log = True # disabled by default wandb_project = "tiny-mambas" wandb_run_name = "run" + datetime.now().strftime("%Y_%m_%d_%H_%M_%S") # data batch_size = 128 # if gradient_accumulation_steps > 1, tshis is the micro-batch size max_seq_len = 256 vocab_size = 4096 # the Llama 2 tokenizer has 32K tokens vocab_source = "custom" # model d_model = 768 n_layer = 8 vocab_size = 4096 # adamw optimizer gradient_accumulation_steps = 4 # used to simulate larger batch sizes learning_rate = 5e-4 # max learning rate max_iters = 100000 # total number of training iterations weight_decay = 1e-1 beta1 = 0.9 beta2 = 0.95 grad_clip = 1.0 # clip gradients at this value, or disable if == 0.0 # learning rate decay settings decay_lr = True # whether to decay the learning rate warmup_iters = 1000 # how many steps to warm up for # system device = "cuda" # examples: 'cpu', 'cuda', 'cuda:0', 'cuda:1' etc., or try 'mps' on macbooks dtype = "float16" # float32|bfloat16|float16 compile = False # use PyTorch 2.0 to compile the model to be faster class mambaConfig: d_model: int = d_model n_layer: int = n_layer vocab_size: int = vocab_size ssm_cfg: dict = None rms_norm: bool = True residual_in_fp32: bool = True fused_add_norm: bool = True pad_vocab_size_multiple: int = 8 config_keys = [ k for k, v in globals().items() if not k.startswith("_") and isinstance(v, (int, float, bool, str)) ] config = {k: globals()[k] for k in config_keys} # will be useful for logging # fixing some hyperparams to sensible defaults lr_decay_iters = max_iters # should be ~= max_iters per Chinchilla min_lr = 5e-5 # minimum learning rate, should be ~= learning_rate/10 per Chinchilla torch.cuda.set_device(0) # ----------------------------------------------------------------------------- torch.manual_seed(1337) torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn device_type = "cuda" if "cuda" in device else "cpu" # for later use in torch.autocast # note: float16 data type will automatically use a GradScaler ptdtype = {"float32": torch.float32, "bfloat16": torch.bfloat16, "float16": torch.float16}[dtype] ctx = ( nullcontext() if device_type == "cpu" else torch.amp.autocast(device_type=device_type, dtype=ptdtype) ) # task-specific setup iter_batches = partial( Task.iter_batches, batch_size=batch_size, max_seq_len=max_seq_len, vocab_size=vocab_size, vocab_source=vocab_source, device=device, num_workers=0, ) # init these up here, can override if init_from='resume' (i.e. from a checkpoint) iter_num = 0 best_val_loss = 1e9 # model init model_args = dict( d_model=d_model, n_layer=n_layer, vocab_size=vocab_size, max_seq_len=max_seq_len, ) tokens_per_iter = gradient_accumulation_steps * 1 * batch_size * max_seq_len # start with model_args from command line if init_from == "scratch": # init a new model from scratch print("Initializing a new model from scratch") model = MambaLMHeadModel(mambaConfig) model.last_loss = None elif init_from == "resume": print(f"Resuming training from {out_dir}") # resume training from a checkpoint. ckpt_path = os.path.join(out_dir, "ckpt.pt") checkpoint = torch.load(ckpt_path, map_location=device) checkpoint_model_args = checkpoint["model_args"] # force these config attributes to be equal otherwise we can't even resume training # the rest of the attributes (e.g. dropout) can stay as desired from command line for k in ["d_model", "n_layer", "vocab_size", "max_seq_len"]: model_args[k] = checkpoint_model_args[k] # create the model model = MambaLMHeadModel(mambaConfig) model.last_loss = None state_dict = checkpoint["model"] # fix the keys of the state dictionary :( # honestly no idea how checkpoints sometimes get this prefix, have to debug more unwanted_prefix = "_orig_mod." for k, v in list(state_dict.items()): if k.startswith(unwanted_prefix): state_dict[k[len(unwanted_prefix) :]] = state_dict.pop(k) model.load_state_dict(state_dict) iter_num = checkpoint["iter_num"] best_val_loss = checkpoint["best_val_loss"] model.to(device) # initialize a GradScaler. If enabled=False scaler is a no-op scaler = torch.cuda.amp.GradScaler(enabled=(dtype == "float16")) # optimizer # start with all of the candidate parameters param_dict = {pn: p for pn, p in model.named_parameters()} # filter out those that do not require grad param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad} # create optim groups. Any parameters that is 2D will be weight decayed, otherwise no. # i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't. betas = (beta1, beta2) decay_params = [p for n, p in param_dict.items() if p.dim() >= 2] nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2] optim_groups = [ {'params': decay_params, 'weight_decay': weight_decay}, {'params': nodecay_params, 'weight_decay': 0.0} ] num_decay_params = sum(p.numel() for p in decay_params) num_nodecay_params = sum(p.numel() for p in nodecay_params) print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters") print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters") # Create AdamW optimizer and use the fused version if it is available fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters use_fused = fused_available and device_type == 'cuda' extra_args = dict(fused=True) if use_fused else dict() optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=betas, **extra_args) print(f"using fused AdamW: {use_fused}") if init_from == "resume" and "optimizer" in checkpoint: optimizer.load_state_dict(checkpoint["optimizer"]) checkpoint = None # free up memory # compile the model if compile: print("compiling the model... (takes a ~minute)") unoptimized_model = model model = torch.compile(model) # requires PyTorch 2.0 # wrap model into DDP container # helps estimate an arbitrarily accurate loss over either split using many batches @torch.no_grad() def estimate_loss(): out = {} model.eval() for split in ["train", "val"]: batch_iter = iter_batches(split=split) losses = torch.zeros(eval_iters) # keep on CPU for k in range(eval_iters): X, Y = next(batch_iter) with ctx: logits = model(X, Y) loss = raw_model.last_loss losses[k] = loss.item() out[split] = losses.mean() model.train() return out # learning rate decay scheduler (cosine with warmup) def get_lr(it): # 1) linear warmup for warmup_iters steps if it < warmup_iters: return learning_rate * it / warmup_iters # 2) if it > lr_decay_iters, return min learning rate if it > lr_decay_iters: return min_lr # 3) in between, use cosine decay down to min learning rate decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters) assert 0 <= decay_ratio <= 1 coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio)) # coeff ranges 0..1 return min_lr + coeff * (learning_rate - min_lr) # logging if wandb_log: import wandb wandb.init(project=wandb_project, name=wandb_run_name, config=config) # training loop train_batch_iter = iter_batches(split="train") X, Y = next(train_batch_iter) # fetch the very first batch t0 = time.time() local_iter_num = 0 # number of iterations in the lifetime of this process raw_model = model # unwrap DDP container if needed running_mfu = -1.0 while True: # determine and set the learning rate for this iteration lr = get_lr(iter_num) if decay_lr else learning_rate for param_group in optimizer.param_groups: param_group["lr"] = lr # evaluate the loss on train/val sets and write checkpoints if iter_num % eval_interval == 0: losses = estimate_loss() print(f"step {iter_num}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}") if wandb_log: try: wandb.log( { "iter": iter_num, "tokens": iter_num * tokens_per_iter, "loss/train": losses["train"], "loss/val": losses["val"], "lr": lr, }, step = iter_num ) except Exception as e: print(f"logging to wandb failed: {e}") if losses["val"] < best_val_loss or always_save_checkpoint: best_val_loss = losses["val"] if iter_num > 0: checkpoint = { "model": raw_model.state_dict(), "optimizer": optimizer.state_dict(), "model_args": model_args, "iter_num": iter_num, "best_val_loss": best_val_loss, "config": config, } print(f"saving checkpoint to {out_dir}") torch.save(checkpoint, os.path.join(out_dir, "ckpt.pt")) #model_export(raw_model, os.path.join(out_dir, "model.bin"), version=0) if iter_num == 0 and eval_only: break # forward backward update, with optional gradient accumulation to simulate larger batch size # and using the GradScaler if data type is float16 for micro_step in range(gradient_accumulation_steps): with ctx: logits = model(X, Y) loss = raw_model.last_loss loss = loss / gradient_accumulation_steps # immediately async prefetch next batch while model is doing the forward pass on the GPU X, Y = next(train_batch_iter) # backward pass, with gradient scaling if training in fp16 scaler.scale(loss).backward() # clip the gradient if grad_clip != 0.0: scaler.unscale_(optimizer) torch.nn.utils.clip_grad_norm_(model.parameters(), grad_clip) # step the optimizer and scaler if training in fp16 scaler.step(optimizer) scaler.update() # flush the gradients as soon as we can, no need for this memory anymore optimizer.zero_grad(set_to_none=True) # timing and logging t1 = time.time() dt = t1 - t0 t0 = t1 if iter_num % log_interval == 0: # get loss as float, scale up due to the divide above. note: this is a CPU-GPU sync point lossf = loss.item() * gradient_accumulation_steps print( f"{iter_num} | loss {lossf:.4f} | lr {lr:e} | {dt*1000:.2f}ms |" ) iter_num += 1 local_iter_num += 1 # termination conditions if iter_num > max_iters: break