First reinforcement learning model on Hugging face
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v1.zip +3 -0
- ppo-LunarLander-v1/_stable_baselines3_version +1 -0
- ppo-LunarLander-v1/data +99 -0
- ppo-LunarLander-v1/policy.optimizer.pth +3 -0
- ppo-LunarLander-v1/policy.pth +3 -0
- ppo-LunarLander-v1/pytorch_variables.pth +3 -0
- ppo-LunarLander-v1/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 272.78 +/- 21.66
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fcfe589f010>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcfe589f0a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcfe589f130>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcfe589f1c0>", "_build": "<function ActorCriticPolicy._build at 0x7fcfe589f250>", "forward": "<function ActorCriticPolicy.forward at 0x7fcfe589f2e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fcfe589f370>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcfe589f400>", "_predict": "<function ActorCriticPolicy._predict at 0x7fcfe589f490>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcfe589f520>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcfe589f5b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcfe589f640>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fcfe5893fc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686510053094378110, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAK0vKj5It5y6hZFutpp1s7DIPnI6a16PNQAAgD8AAIA/wEorvkj9mLwH0gM7ppRUORRzCj5zNza6AACAPwAAgD9NZRS90qWou/32/jxHnnU9qywMOhO8XDwAAIA/AACAP02pWT3wCrs/SKA8P2t3dj7wur28xlwZPQAAAAAAAAAAWmBDPk5kqbyfuSe74TaJOceQFb7yu1k6AACAPwAAgD+mNJA+mX1FPsqye756ZYm+7qz+O+L3oL0AAAAAAAAAAA2Ylj3hyuE571kfvGSF27HeB9O7y+X8MwAAgD8AAIA/QCE9PhQKhbxvWqI7UZf/uazk5b3Fd826AACAPwAAgD9zOiq+XHRYvJ3DGbszFz65cW7GPbiRRjoAAIA/AACAP82yXj2oMqE/ya4CP8AnS7/zeQE9v9Q7PgAAAAAAAAAAc1yDvYWzlLlCk9Y8hWMns2Y7obnaXFOzAACAPwAAgD+zdUq9SL+supMKmT0HNga5j3GwOzjh8rcAAIA/AACAP6YJIr7BIIS8U7Liu4fJhbpya+U9dX9dOwAAgD8AAIA/c/LYPdxLRD6Wfko9YS1NvrRXCT3oMJO7AAAAAAAAAAC62im+j4V1vKNGMztLB3w5Pj/jPc3ecLoAAIA/AACAP/M7wL1sRrG78toIPcbwCTx4oAG9K0P1PAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV8wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGxR+az/qCMAWyUS9SMAXSUR0CfFmVwPy08dX2UKGgGR0ByATevZAY6aAdLt2gIR0CfGl8Rcu8LdX2UKGgGR0BxL0bjtG/faAdL2GgIR0CfGphNM496dX2UKGgGR0BxSmPV/c33aAdL32gIR0CfHI349HMEdX2UKGgGR0BytYmMOwxGaAdL+mgIR0CfHKEit7rtdX2UKGgGR0BxZn5Ec81XaAdL2mgIR0CfHYgGKQ7tdX2UKGgGR0BxtUyXUpd9aAdL5mgIR0CfHbjWCmMwdX2UKGgGR0BxAFgqmTC+aAdL2WgIR0CfHhKraM72dX2UKGgGR0Bw/Z4xDb8FaAdNDAFoCEdAnx8QRf4REnV9lChoBkdAcNVOXE61cGgHTQIBaAhHQJ8ffjABT4t1fZQoaAZHQGUSR/3Fkx1oB03oA2gIR0CfIG+4LCvYdX2UKGgGR0Bg48AJb+tKaAdN6ANoCEdAnyLGwV0tAnV9lChoBkdAcE+KGL1mJ2gHS85oCEdAnyPZfdAPd3V9lChoBkdAcfu1hLGrCGgHS+ZoCEdAnyS0O3DvVnV9lChoBkdAY0iMYMvysmgHTegDaAhHQJ8k3hR64Uh1fZQoaAZHQHFt8GHHmzVoB0vgaAhHQJ8l9T72tdR1fZQoaAZHQHF7y3XqZ+hoB0v2aAhHQJ8mZRFZxJd1fZQoaAZHQHAA8/hVENRoB0vGaAhHQJ8mfAWSEDh1fZQoaAZHQG8LEs8PnSxoB0u0aAhHQJ8m0GX5WR11fZQoaAZHQHGrg/cFhXtoB0vpaAhHQJ8nSQhfShJ1fZQoaAZHQGIhhMBZIQRoB03oA2gIR0CfKOP6KtPpdX2UKGgGR0ByuogdOqNqaAdLxGgIR0CfKdV45cTrdX2UKGgGR0BuCaDGtITXaAdLuGgIR0CfKoPiT+vRdX2UKGgGR0BlAkulGgBcaAdN6ANoCEdAnyrttIkJKXV9lChoBkdAchtwcHWz4WgHS89oCEdAnywyk43m3nV9lChoBkdAcdBPJaJQ+GgHS9loCEdAnyytvKlpGnV9lChoBkdAcD7vWH1vl2gHS79oCEdAny2dQj2SMnV9lChoBkdAcA9y1uzhP2gHS8poCEdAny5uaz/p+3V9lChoBkdAcg4re67NCGgHS+ZoCEdAny6JI+W4VnV9lChoBkdAY+WdaMaS92gHTegDaAhHQJ8u+0qpcX51fZQoaAZHQHEgqlHjIaNoB0v+aAhHQJ8vAmois4l1fZQoaAZHQGScR15jYqZoB03oA2gIR0CfLydBBzFNdX2UKGgGR0Bwor8fms/6aAdL/mgIR0CfL5nGsFMadX2UKGgGR0BxScfms/6gaAdLy2gIR0CfMU889wFUdX2UKGgGR0Bx2ES+QEIPaAdLyGgIR0CfMgh/Aj6fdX2UKGgGR0Bx5UrtmcvvaAdLwmgIR0CfMj9MsYl6dX2UKGgGR0Bw+OFmFrVOaAdLxGgIR0CfM7Jb+tKadX2UKGgGR0Bw0zTLGJemaAdLxWgIR0CfNGPMjeKsdX2UKGgGR0BuXkCvHLidaAdLvWgIR0CfNmwh4dIYdX2UKGgGR0BuL9JnQID6aAdLtWgIR0CfNs17pmmMdX2UKGgGR0Bul6NCJGe+aAdLwmgIR0CfNtuGbkOqdX2UKGgGR0ByWN1yNn5BaAdLx2gIR0CfN9Grjo6kdX2UKGgGR0BwAl8twrDqaAdLymgIR0CfN9IczZYgdX2UKGgGR0BQa9Nvfj0daAdLf2gIR0CfN/qSX+l1dX2UKGgGR0ByYWhFmWdFaAdLzmgIR0CfOKe3hGYsdX2UKGgGR0BwTJPrOZ9eaAdNCAFoCEdAnzjfXsgMdHV9lChoBkdAb3Bw0fozN2gHS7VoCEdAnzw2ETQE6nV9lChoBkdAcc8rKeTV2GgHTQEBaAhHQJ89MoDxLCh1fZQoaAZHQEjdssxwhntoB0uFaAhHQJ8+O7J4jbB1fZQoaAZHQHHnCTlkpZxoB0uZaAhHQJ8+QVQAMlV1fZQoaAZHQHHNNdE9dNZoB0vSaAhHQJ8+f6SDAah1fZQoaAZHQHFHpvo/zJ9oB00VAWgIR0CfPvqQiiZfdX2UKGgGR0Bv9jTnaFmGaAdL1GgIR0CfQQRFqi48dX2UKGgGR0BwanPa+N96aAdLtGgIR0CfQUaMaS9vdX2UKGgGR0BytPS0BwMqaAdL5WgIR0CfQVifg75mdX2UKGgGR0BOn5bY9Pk8aAdLuWgIR0CfQY2pQ1rJdX2UKGgGR0Bwy51Oj7AMaAdL0WgIR0CfQbLm6oVEdX2UKGgGR0Bg5IHC4z7/aAdN6ANoCEdAn0IAM6RyO3V9lChoBkdAZFWoqkM1CWgHTegDaAhHQJ9CJh+fAbh1fZQoaAZHQHF4NF4LThJoB00iAWgIR0CfQ61bqyGBdX2UKGgGR0BhaOjASFoMaAdN6ANoCEdAn0QYqLCN0nV9lChoBkdAcLe+Vkc0cmgHS8VoCEdAn0To8EFGG3V9lChoBkdAb47S8an752gHS9JoCEdAn0Uuh0yP/HV9lChoBkdAcNgWkrPMS2gHS/JoCEdAn0V8hcJMQHV9lChoBkdAcFtwPiDM/2gHS99oCEdAn0X0Nrj5sXV9lChoBkdAcwew84gieWgHS7poCEdAn0Zg2hqTKXV9lChoBkdAcPDT+ee4C2gHS8JoCEdAn0aJzo2XLXV9lChoBkdAcPCAQQL/j2gHS8doCEdAn0bpudf9gnV9lChoBkdAcMlmw7kn1GgHS99oCEdAn0fN6Tnq3XV9lChoBkdAcd5SDRMN+mgHS/9oCEdAn0gk0WM0g3V9lChoBkdAbt50V8CxNmgHS+FoCEdAn0g8lPacqnV9lChoBkdAcN/i/fwZwWgHS9xoCEdAn0hEeEIw/XV9lChoBkdAb3USM98qnWgHS8doCEdAn0oChFmWdHV9lChoBkdAcfESl3yI6GgHS9poCEdAn0oiZrpJPXV9lChoBkdAcq8ny/bj+GgHS7doCEdAn0xCyMUAUHV9lChoBkdAcMVPbfxc3WgHS85oCEdAn0xT37DVIHV9lChoBkdAcRxMYMvysmgHS51oCEdAn01lb3XZoXV9lChoBkdAcRecLSeAeGgHS+xoCEdAn03wK0D2anV9lChoBkdAZJrttygf2mgHTegDaAhHQJ9OCAiFCcB1fZQoaAZHQHHk6Jl8PWhoB00gAWgIR0CfTixMnJDFdX2UKGgGR0BxPs3tKIznaAdL82gIR0CfTrDB/I8ydX2UKGgGR0ByvRqsU7CBaAdL7GgIR0CfT0ekHlfadX2UKGgGR0BwLbXQMQVcaAdLtmgIR0CfT6wHJLdvdX2UKGgGR0BMO4xtYSxraAdLwWgIR0CfUBRB/qgRdX2UKGgGR0ByTJpWV/tqaAdNBwFoCEdAn1BHscABDHV9lChoBkdAcUqcbBGhEmgHS6RoCEdAn1EwrDqGDnV9lChoBkdAcQdEwFkhBGgHS8BoCEdAn1H8CxNZeXV9lChoBkdAcAzLeANG3GgHS9JoCEdAn1N+biIcinV9lChoBkdAcLZBtDUmUmgHS8toCEdAn1QSS/0ulHV9lChoBkdAb37GwRoRI2gHS+poCEdAn1T5pnHvMXV9lChoBkdAcUjd4mkWRGgHS8VoCEdAn1VNszl90HV9lChoBkdAblqnLq2SdWgHS/1oCEdAn1WJz1bqyHV9lChoBkdAcgZCNjslcGgHS+xoCEdAn1XgLqlgt3V9lChoBkdAbyuCZnctXmgHS8JoCEdAn1YvBFd9lXV9lChoBkdASq6jafzz3GgHS7poCEdAn1Ys7QswtnV9lChoBkdAcdxd07r9l2gHS5xoCEdAn1cTPKMefnV9lChoBkdAckid9Ujs2WgHS/JoCEdAn1c9dqtYCHV9lChoBkdAU/HywwCbMGgHS4loCEdAn1ibCm/Fi3V9lChoBkdAcIFyIYWLxmgHS7JoCEdAn1we2qkuYnV9lChoBkdAcmjz3AVO9GgHS/toCEdAn1xB/y5I6XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 315, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3507b37f294327aeacae942766deab36ad563e92081f057a010b04bbe7d6eb51
|
3 |
+
size 146650
|
ppo-LunarLander-v1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v1/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fcfe589f010>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcfe589f0a0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcfe589f130>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcfe589f1c0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fcfe589f250>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fcfe589f2e0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fcfe589f370>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcfe589f400>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fcfe589f490>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcfe589f520>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcfe589f5b0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcfe589f640>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fcfe5893fc0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1686510053094378110,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAK0vKj5It5y6hZFutpp1s7DIPnI6a16PNQAAgD8AAIA/wEorvkj9mLwH0gM7ppRUORRzCj5zNza6AACAPwAAgD9NZRS90qWou/32/jxHnnU9qywMOhO8XDwAAIA/AACAP02pWT3wCrs/SKA8P2t3dj7wur28xlwZPQAAAAAAAAAAWmBDPk5kqbyfuSe74TaJOceQFb7yu1k6AACAPwAAgD+mNJA+mX1FPsqye756ZYm+7qz+O+L3oL0AAAAAAAAAAA2Ylj3hyuE571kfvGSF27HeB9O7y+X8MwAAgD8AAIA/QCE9PhQKhbxvWqI7UZf/uazk5b3Fd826AACAPwAAgD9zOiq+XHRYvJ3DGbszFz65cW7GPbiRRjoAAIA/AACAP82yXj2oMqE/ya4CP8AnS7/zeQE9v9Q7PgAAAAAAAAAAc1yDvYWzlLlCk9Y8hWMns2Y7obnaXFOzAACAPwAAgD+zdUq9SL+supMKmT0HNga5j3GwOzjh8rcAAIA/AACAP6YJIr7BIIS8U7Liu4fJhbpya+U9dX9dOwAAgD8AAIA/c/LYPdxLRD6Wfko9YS1NvrRXCT3oMJO7AAAAAAAAAAC62im+j4V1vKNGMztLB3w5Pj/jPc3ecLoAAIA/AACAP/M7wL1sRrG78toIPcbwCTx4oAG9K0P1PAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV8wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGxR+az/qCMAWyUS9SMAXSUR0CfFmVwPy08dX2UKGgGR0ByATevZAY6aAdLt2gIR0CfGl8Rcu8LdX2UKGgGR0BxL0bjtG/faAdL2GgIR0CfGphNM496dX2UKGgGR0BxSmPV/c33aAdL32gIR0CfHI349HMEdX2UKGgGR0BytYmMOwxGaAdL+mgIR0CfHKEit7rtdX2UKGgGR0BxZn5Ec81XaAdL2mgIR0CfHYgGKQ7tdX2UKGgGR0BxtUyXUpd9aAdL5mgIR0CfHbjWCmMwdX2UKGgGR0BxAFgqmTC+aAdL2WgIR0CfHhKraM72dX2UKGgGR0Bw/Z4xDb8FaAdNDAFoCEdAnx8QRf4REnV9lChoBkdAcNVOXE61cGgHTQIBaAhHQJ8ffjABT4t1fZQoaAZHQGUSR/3Fkx1oB03oA2gIR0CfIG+4LCvYdX2UKGgGR0Bg48AJb+tKaAdN6ANoCEdAnyLGwV0tAnV9lChoBkdAcE+KGL1mJ2gHS85oCEdAnyPZfdAPd3V9lChoBkdAcfu1hLGrCGgHS+ZoCEdAnyS0O3DvVnV9lChoBkdAY0iMYMvysmgHTegDaAhHQJ8k3hR64Uh1fZQoaAZHQHFt8GHHmzVoB0vgaAhHQJ8l9T72tdR1fZQoaAZHQHF7y3XqZ+hoB0v2aAhHQJ8mZRFZxJd1fZQoaAZHQHAA8/hVENRoB0vGaAhHQJ8mfAWSEDh1fZQoaAZHQG8LEs8PnSxoB0u0aAhHQJ8m0GX5WR11fZQoaAZHQHGrg/cFhXtoB0vpaAhHQJ8nSQhfShJ1fZQoaAZHQGIhhMBZIQRoB03oA2gIR0CfKOP6KtPpdX2UKGgGR0ByuogdOqNqaAdLxGgIR0CfKdV45cTrdX2UKGgGR0BuCaDGtITXaAdLuGgIR0CfKoPiT+vRdX2UKGgGR0BlAkulGgBcaAdN6ANoCEdAnyrttIkJKXV9lChoBkdAchtwcHWz4WgHS89oCEdAnywyk43m3nV9lChoBkdAcdBPJaJQ+GgHS9loCEdAnyytvKlpGnV9lChoBkdAcD7vWH1vl2gHS79oCEdAny2dQj2SMnV9lChoBkdAcA9y1uzhP2gHS8poCEdAny5uaz/p+3V9lChoBkdAcg4re67NCGgHS+ZoCEdAny6JI+W4VnV9lChoBkdAY+WdaMaS92gHTegDaAhHQJ8u+0qpcX51fZQoaAZHQHEgqlHjIaNoB0v+aAhHQJ8vAmois4l1fZQoaAZHQGScR15jYqZoB03oA2gIR0CfLydBBzFNdX2UKGgGR0Bwor8fms/6aAdL/mgIR0CfL5nGsFMadX2UKGgGR0BxScfms/6gaAdLy2gIR0CfMU889wFUdX2UKGgGR0Bx2ES+QEIPaAdLyGgIR0CfMgh/Aj6fdX2UKGgGR0Bx5UrtmcvvaAdLwmgIR0CfMj9MsYl6dX2UKGgGR0Bw+OFmFrVOaAdLxGgIR0CfM7Jb+tKadX2UKGgGR0Bw0zTLGJemaAdLxWgIR0CfNGPMjeKsdX2UKGgGR0BuXkCvHLidaAdLvWgIR0CfNmwh4dIYdX2UKGgGR0BuL9JnQID6aAdLtWgIR0CfNs17pmmMdX2UKGgGR0Bul6NCJGe+aAdLwmgIR0CfNtuGbkOqdX2UKGgGR0ByWN1yNn5BaAdLx2gIR0CfN9Grjo6kdX2UKGgGR0BwAl8twrDqaAdLymgIR0CfN9IczZYgdX2UKGgGR0BQa9Nvfj0daAdLf2gIR0CfN/qSX+l1dX2UKGgGR0ByYWhFmWdFaAdLzmgIR0CfOKe3hGYsdX2UKGgGR0BwTJPrOZ9eaAdNCAFoCEdAnzjfXsgMdHV9lChoBkdAb3Bw0fozN2gHS7VoCEdAnzw2ETQE6nV9lChoBkdAcc8rKeTV2GgHTQEBaAhHQJ89MoDxLCh1fZQoaAZHQEjdssxwhntoB0uFaAhHQJ8+O7J4jbB1fZQoaAZHQHHnCTlkpZxoB0uZaAhHQJ8+QVQAMlV1fZQoaAZHQHHNNdE9dNZoB0vSaAhHQJ8+f6SDAah1fZQoaAZHQHFHpvo/zJ9oB00VAWgIR0CfPvqQiiZfdX2UKGgGR0Bv9jTnaFmGaAdL1GgIR0CfQQRFqi48dX2UKGgGR0BwanPa+N96aAdLtGgIR0CfQUaMaS9vdX2UKGgGR0BytPS0BwMqaAdL5WgIR0CfQVifg75mdX2UKGgGR0BOn5bY9Pk8aAdLuWgIR0CfQY2pQ1rJdX2UKGgGR0Bwy51Oj7AMaAdL0WgIR0CfQbLm6oVEdX2UKGgGR0Bg5IHC4z7/aAdN6ANoCEdAn0IAM6RyO3V9lChoBkdAZFWoqkM1CWgHTegDaAhHQJ9CJh+fAbh1fZQoaAZHQHF4NF4LThJoB00iAWgIR0CfQ61bqyGBdX2UKGgGR0BhaOjASFoMaAdN6ANoCEdAn0QYqLCN0nV9lChoBkdAcLe+Vkc0cmgHS8VoCEdAn0To8EFGG3V9lChoBkdAb47S8an752gHS9JoCEdAn0Uuh0yP/HV9lChoBkdAcNgWkrPMS2gHS/JoCEdAn0V8hcJMQHV9lChoBkdAcFtwPiDM/2gHS99oCEdAn0X0Nrj5sXV9lChoBkdAcwew84gieWgHS7poCEdAn0Zg2hqTKXV9lChoBkdAcPDT+ee4C2gHS8JoCEdAn0aJzo2XLXV9lChoBkdAcPCAQQL/j2gHS8doCEdAn0bpudf9gnV9lChoBkdAcMlmw7kn1GgHS99oCEdAn0fN6Tnq3XV9lChoBkdAcd5SDRMN+mgHS/9oCEdAn0gk0WM0g3V9lChoBkdAbt50V8CxNmgHS+FoCEdAn0g8lPacqnV9lChoBkdAcN/i/fwZwWgHS9xoCEdAn0hEeEIw/XV9lChoBkdAb3USM98qnWgHS8doCEdAn0oChFmWdHV9lChoBkdAcfESl3yI6GgHS9poCEdAn0oiZrpJPXV9lChoBkdAcq8ny/bj+GgHS7doCEdAn0xCyMUAUHV9lChoBkdAcMVPbfxc3WgHS85oCEdAn0xT37DVIHV9lChoBkdAcRxMYMvysmgHS51oCEdAn01lb3XZoXV9lChoBkdAcRecLSeAeGgHS+xoCEdAn03wK0D2anV9lChoBkdAZJrttygf2mgHTegDaAhHQJ9OCAiFCcB1fZQoaAZHQHHk6Jl8PWhoB00gAWgIR0CfTixMnJDFdX2UKGgGR0BxPs3tKIznaAdL82gIR0CfTrDB/I8ydX2UKGgGR0ByvRqsU7CBaAdL7GgIR0CfT0ekHlfadX2UKGgGR0BwLbXQMQVcaAdLtmgIR0CfT6wHJLdvdX2UKGgGR0BMO4xtYSxraAdLwWgIR0CfUBRB/qgRdX2UKGgGR0ByTJpWV/tqaAdNBwFoCEdAn1BHscABDHV9lChoBkdAcUqcbBGhEmgHS6RoCEdAn1EwrDqGDnV9lChoBkdAcQdEwFkhBGgHS8BoCEdAn1H8CxNZeXV9lChoBkdAcAzLeANG3GgHS9JoCEdAn1N+biIcinV9lChoBkdAcLZBtDUmUmgHS8toCEdAn1QSS/0ulHV9lChoBkdAb37GwRoRI2gHS+poCEdAn1T5pnHvMXV9lChoBkdAcUjd4mkWRGgHS8VoCEdAn1VNszl90HV9lChoBkdAblqnLq2SdWgHS/1oCEdAn1WJz1bqyHV9lChoBkdAcgZCNjslcGgHS+xoCEdAn1XgLqlgt3V9lChoBkdAbyuCZnctXmgHS8JoCEdAn1YvBFd9lXV9lChoBkdASq6jafzz3GgHS7poCEdAn1Ys7QswtnV9lChoBkdAcdxd07r9l2gHS5xoCEdAn1cTPKMefnV9lChoBkdAckid9Ujs2WgHS/JoCEdAn1c9dqtYCHV9lChoBkdAU/HywwCbMGgHS4loCEdAn1ibCm/Fi3V9lChoBkdAcIFyIYWLxmgHS7JoCEdAn1we2qkuYnV9lChoBkdAcmjz3AVO9GgHS/toCEdAn1xB/y5I6XVlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 315,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v1/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f6c4c4ef28c0fa041bc43a6cf2ead9913ee5cb5f55430f5f2b07f41f379543ef
|
3 |
+
size 87929
|
ppo-LunarLander-v1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:99fb7145d233d4e26b7dd9936cf1f11cf6e38beb18e1f1e644aaaf3d130ee26d
|
3 |
+
size 43329
|
ppo-LunarLander-v1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v1/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (183 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 272.7818194, "std_reward": 21.65887332426571, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-11T19:35:37.567548"}
|