Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 267.81 +/- 24.14
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7968c6a851b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7968c6a85240>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7968c6a852d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7968c6a85360>", "_build": "<function ActorCriticPolicy._build at 0x7968c6a853f0>", "forward": "<function ActorCriticPolicy.forward at 0x7968c6a85480>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7968c6a85510>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7968c6a855a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7968c6a85630>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7968c6a856c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7968c6a85750>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7968c6a857e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7968c6a88640>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1696876366881599866, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMrijvlrK4/vywwPWmR0b7CfcM8KswwPgAAAAAAAAAAzfG6vdw3sj+idfS+11aLvorUvr0GME2+AAAAAAAAAABmchA8gcCwPqSIw73c+bG+32AHvhAFNb0AAAAAAAAAAJohez0f174/soykPk2ajrvzknQ9KhVaPgAAAAAAAAAAgBZ1PR+99LlXKy86QUU+ti5CjrrTS0q5AACAPwAAgD8A7CW8nw+Su5o1Bzqmpok8mXEiPWiear0AAIA/AACAP5oExjypukK8krEVu1+v0TxdaVY899GgvQAAgD8AAIA/mnmQu0jPnLrShIS2t8MwsQ6LuzpC2Js1AACAPwAAgD+aNcU9q1wdP4qwFL7J6LG+PhHJPHhkRDwAAAAAAAAAAAAGt7ycqki8SOscvIzz1jybebM9JPGsvQAAgD8AAIA/M3MbuokZPz0Otzg9n38JvnRjtLvAt6A9AAAAAAAAAABNZgo99hxEugUoxzmWDlI1uyKPOkti5rgAAIA/AACAP2bqirv4BK4/LHUhu5LM3L7aTpg9jrcbvAAAAAAAAAAAxisUPocaSD8+rRu9y9HYvk2OcT7QpuO9AAAAAAAAAAAmT/I9SRntPuNJXL6MGra+xZoEvVXgubwAAAAAAAAAAM3wgTtUQZM9ZImIPS91VL4tGNc9Yg3AvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCT42Kl54aMAWyUTSsBjAF0lEdAkUiG38XN1XV9lChoBkdAbvyFvAGjbmgHTQ4BaAhHQJFI3dl/Yrd1fZQoaAZHQHGNiHEdeY5oB0v5aAhHQJFJAYQ8OkN1fZQoaAZHQHCj/E0iyIJoB0v6aAhHQJFJs29+PR11fZQoaAZHQHJ6IoJAt4BoB00cAWgIR0CRSb4A0bcXdX2UKGgGR0ByS5MAWBSUaAdL9mgIR0CRSjTvy9VWdX2UKGgGR0BxJLl5nlGPaAdL52gIR0CRSpUVzp5edX2UKGgGR0ByW4O7QLNOaAdNCAFoCEdAkUudJaq0dHV9lChoBkdAcbNvc8DB/WgHS/5oCEdAkUvQaFVT73V9lChoBkdAckDUJfICEGgHTSIBaAhHQJFMxblijL11fZQoaAZHQG599w3o9s9oB00GAWgIR0CRTPhGH58CdX2UKGgGR0ByJ/doFmnPaAdL+GgIR0CRTTKMefZmdX2UKGgGR0BubKlUIcBEaAdNTwFoCEdAkU08Vk+X7nV9lChoBkdAc0Qx8UmD2GgHTQIBaAhHQJFNVL127nR1fZQoaAZHQHBAlsDW9UVoB00QAWgIR0CRUFZs9B8hdX2UKGgGR0ByDrvMKTjeaAdL7mgIR0CRUQn8baRIdX2UKGgGR0Bx2FT4tYjjaAdNAQFoCEdAkVJcjmjj73V9lChoBkdAb9u3QUpNK2gHTUcBaAhHQJFSvgflp491fZQoaAZHQHFE9Htnf2toB0vsaAhHQJFSviFTNt91fZQoaAZHQHCYSs0YTCdoB0v9aAhHQJFTfI7vG6x1fZQoaAZHQG/apeE7GNtoB00NAWgIR0CRVQOBDohZdX2UKGgGR0BwXQOoYNy6aAdNBQFoCEdAkVU1oYekpXV9lChoBkdAcrt9GI9C/2gHTVQBaAhHQJFWm6pYLb51fZQoaAZHQHBm4XO4XoFoB00JAWgIR0CRVuevZAY6dX2UKGgGR0Bx3Os7uDzzaAdNCgFoCEdAkVc2qYJE6XV9lChoBkdAclgKJEYwZmgHS/FoCEdAkVdY6nzg/HV9lChoBkdAbfVq33Hq/2gHS/xoCEdAkVeYGt6ol3V9lChoBkdAcCqZrYXfqGgHTQIBaAhHQJFYSUmlZYB1fZQoaAZHQFQE78vVVghoB0uxaAhHQJFYgn1Fpfx1fZQoaAZHQHG9hEKE385oB00RAWgIR0CRWODOTq0MdX2UKGgGR0Bt5nVkMCtBaAdNYwFoCEdAkVxMMRYigXV9lChoBkdAbNGu+RHPNWgHTQMBaAhHQJFcbvWpZOl1fZQoaAZHQHBi2qHXVb1oB00PAWgIR0CRXkgXuVopdX2UKGgGR0BwuwkleF+NaAdNDQFoCEdAkV6I//vOQnV9lChoBkdAcqmu1F6RhmgHTRwBaAhHQJFfKkXUH6d1fZQoaAZHQHEnvReC04RoB00hAWgIR0CRYCZBcAzYdX2UKGgGR0BQ6P779AHFaAdLv2gIR0CRYDJHAh0RdX2UKGgGR0BuJjjghr31aAdL/2gIR0CRYD3j+717dX2UKGgGR0ByLj7oB7u2aAdNEQFoCEdAkWDQrUb1iHV9lChoBkdAcB8mR/3Fk2gHS/9oCEdAkWHKAOJ+D3V9lChoBkdAb14m51/2CmgHTQ4BaAhHQJFymij+Jgt1fZQoaAZHQHJalCw8nu1oB00JAWgIR0CRctTc6/7BdX2UKGgGR0BvYqUJOWSmaAdNIAFoCEdAkXMj72tdRnV9lChoBkdAcbbX668QI2gHTRYBaAhHQJFzSFsYVIt1fZQoaAZHQHBt1sYVIqdoB00aAWgIR0CRc+it7rs0dX2UKGgGR0Byrny1/lQuaAdNLQFoCEdAkXSaCtihFnV9lChoBkdAcFrP+n62v2gHTQsBaAhHQJF19TyauwJ1fZQoaAZHQHFdl9Wp6yBoB00LAWgIR0CRdgqASWZ7dX2UKGgGR0BvCPJkoWpIaAdNDAFoCEdAkXc2wV0tAnV9lChoBkdAbhTJW/8EV2gHTQwBaAhHQJF3YVFhG6R1fZQoaAZHQHHF2cnVoYhoB0v8aAhHQJF4IURFqi51fZQoaAZHQHK9IQ8OkLxoB0v+aAhHQJF4OIyj59F1fZQoaAZHQGwvI6S1Vo9oB00DAWgIR0CReE3WFvhqdX2UKGgGR0BwsQ4m1IAfaAdNPAFoCEdAkXldjTa0yHV9lChoBkdAczVK+i8Fp2gHS/xoCEdAkXlwt4A0bnV9lChoBkdAcaXNpdrwfGgHTQYBaAhHQJF5nXSSeRR1fZQoaAZHQHFoIfKZDzBoB0v1aAhHQJF6DkwN9Yx1fZQoaAZHQHBue67NB4VoB00tAWgIR0CRehKCg9NfdX2UKGgGR0BwYmAe7tiQaAdNBQFoCEdAkXpRMrVe8nV9lChoBkdAcgZG2kSElGgHS/xoCEdAkXrf+bVjJHV9lChoBkdAcXMgow22omgHTS4BaAhHQJF6+0MPSUl1fZQoaAZHQG4X/lp48lpoB00AAWgIR0CRe6urZJ05dX2UKGgGR0BxcxPM0P6LaAdL7WgIR0CRfxCTUy57dX2UKGgGR0BzAk482aUiaAdL9WgIR0CRfyM8HObBdX2UKGgGR0BwXN2X9itraAdNDQFoCEdAkX8q37UG3XV9lChoBkdAcJyv4dp7C2gHTVABaAhHQJF/o9IPK+11fZQoaAZHQHK2BhMJyABoB00kAWgIR0CRf7XzDn/2dX2UKGgGR0BxBUwco6S1aAdNZwFoCEdAkYB1vVEux3V9lChoBkdAbJl6ol2NemgHTQYBaAhHQJGA+raM72d1fZQoaAZHQHEh++AVfu1oB00xAWgIR0CRgRq+8Gs4dX2UKGgGR0BxVtlTWGypaAdNBwFoCEdAkYEv5YYBNnV9lChoBkdAcqW4wRGtp2gHS/poCEdAkYFBQrMC93V9lChoBkdAcZbxBE8aGmgHS+loCEdAkYHK+rU9ZHV9lChoBkdAcE10vGp++mgHTTEBaAhHQJGCEYixFAp1fZQoaAZHQHDEZ1/2Cd1oB00ZAWgIR0CRghDMvAXVdX2UKGgGR0BxDj6BRQ7+aAdNEgFoCEdAkYIftx+8XnV9lChoBkdAcE/jhDPWx2gHS/xoCEdAkYLYGD+R5nV9lChoBkdAcUCvalDWsmgHTSQBaAhHQJGC+LHdXT51fZQoaAZHQHKNkd/8VHpoB00AAWgIR0CRhd8PWhAXdX2UKGgGR0Bv9MlkYoAoaAdNBQFoCEdAkYYVk+X7cnV9lChoBkdATZWU8mrsB2gHS81oCEdAkYYqG+K0lnV9lChoBkdAcXkQO4G2TmgHTRgBaAhHQJGHKWnjyWl1fZQoaAZHQHBVozFdcB5oB00gAWgIR0CRh3xOclPadX2UKGgGR0Bw7CfPHDJmaAdL9mgIR0CRh5QumJm/dX2UKGgGR0ByfKH446wMaAdL3GgIR0CRh+VIqbz9dX2UKGgGR0Bx22pLmITHaAdNFgFoCEdAkYfk6xPfsXV9lChoBkdAc0WZBsyi22gHTQQBaAhHQJGIKIJqqOt1fZQoaAZHQHC5upn6EaloB00AAWgIR0CRiO9mpVCHdX2UKGgGR0BvH5nL7oB8aAdNaQFoCEdAkYkGlhw2l3V9lChoBkdAcnaXY150KmgHTSwBaAhHQJGJNdt2s7x1fZQoaAZHQHLsEtRNyo5oB0vsaAhHQJGJYWWQfZF1fZQoaAZHQG+8glfJFLFoB00RAWgIR0CRiXPTodMkdX2UKGgGR0BukLB/I8yOaAdNIAFoCEdAkYtdqQA+6nV9lChoBkdAVE1y0a6z3WgHS7ZoCEdAkYuX05EMLHV9lChoBkdAb7/S88La3GgHTXUBaAhHQJGMfJA+pwV1fZQoaAZHQHHI0GiYb85oB0v1aAhHQJGOISM98qp1fZQoaAZHQHJCIxpL26FoB0v0aAhHQJGPiwRoRI11fZQoaAZHQHBdtvsJIDpoB00dAWgIR0CRj/KjBVMmdX2UKGgGR0ByBYQkHD77aAdL8WgIR0CRj/5n13+udX2UKGgGR0Bxy8ifQKKHaAdL6WgIR0CRkG/JvHcUdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d042daa882d9001fb63d4206a0dcade6691e995e9cf65d2497200fb56f5021d9
|
3 |
+
size 146711
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7968c6a851b0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7968c6a85240>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7968c6a852d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7968c6a85360>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7968c6a853f0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7968c6a85480>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7968c6a85510>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7968c6a855a0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7968c6a85630>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7968c6a856c0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7968c6a85750>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7968c6a857e0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7968c6a88640>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1696876366881599866,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMrijvlrK4/vywwPWmR0b7CfcM8KswwPgAAAAAAAAAAzfG6vdw3sj+idfS+11aLvorUvr0GME2+AAAAAAAAAABmchA8gcCwPqSIw73c+bG+32AHvhAFNb0AAAAAAAAAAJohez0f174/soykPk2ajrvzknQ9KhVaPgAAAAAAAAAAgBZ1PR+99LlXKy86QUU+ti5CjrrTS0q5AACAPwAAgD8A7CW8nw+Su5o1Bzqmpok8mXEiPWiear0AAIA/AACAP5oExjypukK8krEVu1+v0TxdaVY899GgvQAAgD8AAIA/mnmQu0jPnLrShIS2t8MwsQ6LuzpC2Js1AACAPwAAgD+aNcU9q1wdP4qwFL7J6LG+PhHJPHhkRDwAAAAAAAAAAAAGt7ycqki8SOscvIzz1jybebM9JPGsvQAAgD8AAIA/M3MbuokZPz0Otzg9n38JvnRjtLvAt6A9AAAAAAAAAABNZgo99hxEugUoxzmWDlI1uyKPOkti5rgAAIA/AACAP2bqirv4BK4/LHUhu5LM3L7aTpg9jrcbvAAAAAAAAAAAxisUPocaSD8+rRu9y9HYvk2OcT7QpuO9AAAAAAAAAAAmT/I9SRntPuNJXL6MGra+xZoEvVXgubwAAAAAAAAAAM3wgTtUQZM9ZImIPS91VL4tGNc9Yg3AvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVIgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCT42Kl54aMAWyUTSsBjAF0lEdAkUiG38XN1XV9lChoBkdAbvyFvAGjbmgHTQ4BaAhHQJFI3dl/Yrd1fZQoaAZHQHGNiHEdeY5oB0v5aAhHQJFJAYQ8OkN1fZQoaAZHQHCj/E0iyIJoB0v6aAhHQJFJs29+PR11fZQoaAZHQHJ6IoJAt4BoB00cAWgIR0CRSb4A0bcXdX2UKGgGR0ByS5MAWBSUaAdL9mgIR0CRSjTvy9VWdX2UKGgGR0BxJLl5nlGPaAdL52gIR0CRSpUVzp5edX2UKGgGR0ByW4O7QLNOaAdNCAFoCEdAkUudJaq0dHV9lChoBkdAcbNvc8DB/WgHS/5oCEdAkUvQaFVT73V9lChoBkdAckDUJfICEGgHTSIBaAhHQJFMxblijL11fZQoaAZHQG599w3o9s9oB00GAWgIR0CRTPhGH58CdX2UKGgGR0ByJ/doFmnPaAdL+GgIR0CRTTKMefZmdX2UKGgGR0BubKlUIcBEaAdNTwFoCEdAkU08Vk+X7nV9lChoBkdAc0Qx8UmD2GgHTQIBaAhHQJFNVL127nR1fZQoaAZHQHBAlsDW9UVoB00QAWgIR0CRUFZs9B8hdX2UKGgGR0ByDrvMKTjeaAdL7mgIR0CRUQn8baRIdX2UKGgGR0Bx2FT4tYjjaAdNAQFoCEdAkVJcjmjj73V9lChoBkdAb9u3QUpNK2gHTUcBaAhHQJFSvgflp491fZQoaAZHQHFE9Htnf2toB0vsaAhHQJFSviFTNt91fZQoaAZHQHCYSs0YTCdoB0v9aAhHQJFTfI7vG6x1fZQoaAZHQG/apeE7GNtoB00NAWgIR0CRVQOBDohZdX2UKGgGR0BwXQOoYNy6aAdNBQFoCEdAkVU1oYekpXV9lChoBkdAcrt9GI9C/2gHTVQBaAhHQJFWm6pYLb51fZQoaAZHQHBm4XO4XoFoB00JAWgIR0CRVuevZAY6dX2UKGgGR0Bx3Os7uDzzaAdNCgFoCEdAkVc2qYJE6XV9lChoBkdAclgKJEYwZmgHS/FoCEdAkVdY6nzg/HV9lChoBkdAbfVq33Hq/2gHS/xoCEdAkVeYGt6ol3V9lChoBkdAcCqZrYXfqGgHTQIBaAhHQJFYSUmlZYB1fZQoaAZHQFQE78vVVghoB0uxaAhHQJFYgn1Fpfx1fZQoaAZHQHG9hEKE385oB00RAWgIR0CRWODOTq0MdX2UKGgGR0Bt5nVkMCtBaAdNYwFoCEdAkVxMMRYigXV9lChoBkdAbNGu+RHPNWgHTQMBaAhHQJFcbvWpZOl1fZQoaAZHQHBi2qHXVb1oB00PAWgIR0CRXkgXuVopdX2UKGgGR0BwuwkleF+NaAdNDQFoCEdAkV6I//vOQnV9lChoBkdAcqmu1F6RhmgHTRwBaAhHQJFfKkXUH6d1fZQoaAZHQHEnvReC04RoB00hAWgIR0CRYCZBcAzYdX2UKGgGR0BQ6P779AHFaAdLv2gIR0CRYDJHAh0RdX2UKGgGR0BuJjjghr31aAdL/2gIR0CRYD3j+717dX2UKGgGR0ByLj7oB7u2aAdNEQFoCEdAkWDQrUb1iHV9lChoBkdAcB8mR/3Fk2gHS/9oCEdAkWHKAOJ+D3V9lChoBkdAb14m51/2CmgHTQ4BaAhHQJFymij+Jgt1fZQoaAZHQHJalCw8nu1oB00JAWgIR0CRctTc6/7BdX2UKGgGR0BvYqUJOWSmaAdNIAFoCEdAkXMj72tdRnV9lChoBkdAcbbX668QI2gHTRYBaAhHQJFzSFsYVIt1fZQoaAZHQHBt1sYVIqdoB00aAWgIR0CRc+it7rs0dX2UKGgGR0Byrny1/lQuaAdNLQFoCEdAkXSaCtihFnV9lChoBkdAcFrP+n62v2gHTQsBaAhHQJF19TyauwJ1fZQoaAZHQHFdl9Wp6yBoB00LAWgIR0CRdgqASWZ7dX2UKGgGR0BvCPJkoWpIaAdNDAFoCEdAkXc2wV0tAnV9lChoBkdAbhTJW/8EV2gHTQwBaAhHQJF3YVFhG6R1fZQoaAZHQHHF2cnVoYhoB0v8aAhHQJF4IURFqi51fZQoaAZHQHK9IQ8OkLxoB0v+aAhHQJF4OIyj59F1fZQoaAZHQGwvI6S1Vo9oB00DAWgIR0CReE3WFvhqdX2UKGgGR0BwsQ4m1IAfaAdNPAFoCEdAkXldjTa0yHV9lChoBkdAczVK+i8Fp2gHS/xoCEdAkXlwt4A0bnV9lChoBkdAcaXNpdrwfGgHTQYBaAhHQJF5nXSSeRR1fZQoaAZHQHFoIfKZDzBoB0v1aAhHQJF6DkwN9Yx1fZQoaAZHQHBue67NB4VoB00tAWgIR0CRehKCg9NfdX2UKGgGR0BwYmAe7tiQaAdNBQFoCEdAkXpRMrVe8nV9lChoBkdAcgZG2kSElGgHS/xoCEdAkXrf+bVjJHV9lChoBkdAcXMgow22omgHTS4BaAhHQJF6+0MPSUl1fZQoaAZHQG4X/lp48lpoB00AAWgIR0CRe6urZJ05dX2UKGgGR0BxcxPM0P6LaAdL7WgIR0CRfxCTUy57dX2UKGgGR0BzAk482aUiaAdL9WgIR0CRfyM8HObBdX2UKGgGR0BwXN2X9itraAdNDQFoCEdAkX8q37UG3XV9lChoBkdAcJyv4dp7C2gHTVABaAhHQJF/o9IPK+11fZQoaAZHQHK2BhMJyABoB00kAWgIR0CRf7XzDn/2dX2UKGgGR0BxBUwco6S1aAdNZwFoCEdAkYB1vVEux3V9lChoBkdAbJl6ol2NemgHTQYBaAhHQJGA+raM72d1fZQoaAZHQHEh++AVfu1oB00xAWgIR0CRgRq+8Gs4dX2UKGgGR0BxVtlTWGypaAdNBwFoCEdAkYEv5YYBNnV9lChoBkdAcqW4wRGtp2gHS/poCEdAkYFBQrMC93V9lChoBkdAcZbxBE8aGmgHS+loCEdAkYHK+rU9ZHV9lChoBkdAcE10vGp++mgHTTEBaAhHQJGCEYixFAp1fZQoaAZHQHDEZ1/2Cd1oB00ZAWgIR0CRghDMvAXVdX2UKGgGR0BxDj6BRQ7+aAdNEgFoCEdAkYIftx+8XnV9lChoBkdAcE/jhDPWx2gHS/xoCEdAkYLYGD+R5nV9lChoBkdAcUCvalDWsmgHTSQBaAhHQJGC+LHdXT51fZQoaAZHQHKNkd/8VHpoB00AAWgIR0CRhd8PWhAXdX2UKGgGR0Bv9MlkYoAoaAdNBQFoCEdAkYYVk+X7cnV9lChoBkdATZWU8mrsB2gHS81oCEdAkYYqG+K0lnV9lChoBkdAcXkQO4G2TmgHTRgBaAhHQJGHKWnjyWl1fZQoaAZHQHBVozFdcB5oB00gAWgIR0CRh3xOclPadX2UKGgGR0Bw7CfPHDJmaAdL9mgIR0CRh5QumJm/dX2UKGgGR0ByfKH446wMaAdL3GgIR0CRh+VIqbz9dX2UKGgGR0Bx22pLmITHaAdNFgFoCEdAkYfk6xPfsXV9lChoBkdAc0WZBsyi22gHTQQBaAhHQJGIKIJqqOt1fZQoaAZHQHC5upn6EaloB00AAWgIR0CRiO9mpVCHdX2UKGgGR0BvH5nL7oB8aAdNaQFoCEdAkYkGlhw2l3V9lChoBkdAcnaXY150KmgHTSwBaAhHQJGJNdt2s7x1fZQoaAZHQHLsEtRNyo5oB0vsaAhHQJGJYWWQfZF1fZQoaAZHQG+8glfJFLFoB00RAWgIR0CRiXPTodMkdX2UKGgGR0BukLB/I8yOaAdNIAFoCEdAkYtdqQA+6nV9lChoBkdAVE1y0a6z3WgHS7ZoCEdAkYuX05EMLHV9lChoBkdAb7/S88La3GgHTXUBaAhHQJGMfJA+pwV1fZQoaAZHQHHI0GiYb85oB0v1aAhHQJGOISM98qp1fZQoaAZHQHJCIxpL26FoB0v0aAhHQJGPiwRoRI11fZQoaAZHQHBdtvsJIDpoB00dAWgIR0CRj/KjBVMmdX2UKGgGR0ByBYQkHD77aAdL8WgIR0CRj/5n13+udX2UKGgGR0Bxy8ifQKKHaAdL6WgIR0CRkG/JvHcUdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0a889dce07594138750c2449fe4399dd0cb111d5d9e0f2ec45cf1a05d194199c
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c91ac628a726ff537c8d74bbb1d87be28e12efb19023b31b4f1015e27abb955
|
3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (189 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 267.81441050315914, "std_reward": 24.13844276000039, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-09T18:54:22.205449"}
|