DRL-LunarLander
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 223.56 +/- 75.21
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fcf5b4ffd00>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcf5b4ffd90>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcf5b4ffe20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcf5b4ffeb0>", "_build": "<function ActorCriticPolicy._build at 0x7fcf5b4fff40>", "forward": "<function ActorCriticPolicy.forward at 0x7fcf5b514040>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fcf5b5140d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcf5b514160>", "_predict": "<function ActorCriticPolicy._predict at 0x7fcf5b5141f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcf5b514280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcf5b514310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcf5b5143a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fcf5b505340>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693396270319593631, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACblsz32yBs5+CmNu3yJrjWGc3m7lrKmOgAAgD8AAIA/M0Obu4WT1blK6No2AK4uMj9fQTumBQK2AACAPwAAgD8zU+879jxyuvV3TLjtq3izFnodOubtbjcAAIA/AACAP9q+wj3DXT66Dl0xuGoAsLX71mi7Y6NONwAAgD8AAIA/5qY9PeHShLp7Ils5MXhUNArAMLsOQH+4AACAPwAAgD8Avdu9KTBNumNcpbtd7tg2pFouOtCVmzoAAIA/AACAP5p+7DwUhIO6Q2bRus8/3LWRQsW6rkP0OQAAgD8AAIA/s1PnveEYmbotFXq6N60oNy2QvjiKG4g5AACAPwAAgD+asnM9LNmxP57abz7R+4u+gVZYPQ26Dz0AAAAAAAAAAM0/sLxSqOm5nvyGOTnbEjUjNSU7WfWeuAAAgD8AAIA/zTRRPKhkuz7KAGs+WhhLvh69oT0231E9AAAAAAAAAABNQzo+2NsuP+sxH73ZCoe+G+IqPSut1LwAAAAAAAAAAAAj8TzDYWq6j4wsuZcBKLRZYtW6Km1KOAAAgD8AAIA/wA6Fvqofqj/yHWC+5a9+vmRHZr4/jZs9AAAAAAAAAAANtLc9e7yAuv6LK7uGfF62ok8Bu/CZRzoAAAAAAACAP9jSor5Vkp4/9wamvhGumr6yJIq+GKDdPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGWKFd1MdtGMAWyUTegDjAF0lEdAlENZIxxku3V9lChoBkdAYuJQzk6tDGgHTegDaAhHQJRIDlzU7S11fZQoaAZHQGVo5jQRf4RoB03oA2gIR0CUTYRmK64EdX2UKGgGR0A3Wkxyn1nNaAdL+GgIR0CUVDoIfKZEdX2UKGgGR0Bjgn4EfT1DaAdN6ANoCEdAlFU76P8ye3V9lChoBkdAYzH+fAbhnGgHTegDaAhHQJRWfrWy1NR1fZQoaAZHQGNh9szl90BoB03oA2gIR0CUYFtlqagFdX2UKGgGR0Bf0pRoAXEZaAdN6ANoCEdAlGWr7Gecx3V9lChoBkdAZBXL2YfGMmgHTegDaAhHQJRm8zWPLgZ1fZQoaAZHQGBQdjG1hLJoB03oA2gIR0CUZ96O5rgwdX2UKGgGR0BhYQiiZfD2aAdN6ANoCEdAlGvdZA6dUnV9lChoBkdAZL1kxyn1nWgHTegDaAhHQJSEtAs052h1fZQoaAZHQGPui2lVLjBoB03oA2gIR0CUimxpcophdX2UKGgGR0Bj6rXFtKqXaAdN6ANoCEdAlI/qgyuZC3V9lChoBkdAYUOI1tO2zGgHTegDaAhHQJSdjndO6/Z1fZQoaAZHQGA2m6oVEeBoB03oA2gIR0CUnbg6EJ0GdX2UKGgGR0BjH9nbqQiiaAdN6ANoCEdAlKBuXiR4hXV9lChoBkdAZb41jRUm2WgHTegDaAhHQJSkBRBNVR11fZQoaAZHQGHX37+DOC5oB03oA2gIR0CUqDEA5q/NdX2UKGgGR0BjUu9+PRzBaAdN6ANoCEdAlK7vmxMWXXV9lChoBkdAYveYqG1x82gHTegDaAhHQJSv5zltCRh1fZQoaAZHQGXf60IC2c9oB03oA2gIR0CUsRdDpkf+dX2UKGgGR0BdKdgKF7D3aAdN6ANoCEdAlLz8CkoF3nV9lChoBkdAXwKTq0MPSWgHTegDaAhHQJTEeaOPvKF1fZQoaAZHQGM7iCSRr8BoB03oA2gIR0CUxkj2i+L4dX2UKGgGR0BlKhdB0IToaAdN6ANoCEdAlMeHCoCMgnV9lChoBkdADcW6bvw3HmgHTRYBaAhHQJTIahtcfNl1fZQoaAZHQGJvjO9nK4hoB03oA2gIR0CUy/v5gw49dX2UKGgGR0Bfo1rAP/aQaAdN6ANoCEdAlODMEeQuEnV9lChoBkdAR3hw84gieWgHTRQBaAhHQJTizSofjjt1fZQoaAZHQFpxubqhUR5oB03oA2gIR0CU5N9YwIt2dX2UKGgGR0AwuYNRWLgoaAdNLQFoCEdAlOjTIikftHV9lChoBkdAZQvQHAymAWgHTegDaAhHQJTp8hGH58B1fZQoaAZHQGbpDkMkQf9oB03oA2gIR0CU+Q4zJp35dX2UKGgGR0Bh8eTA31jBaAdN6ANoCEdAlPlB6a9bo3V9lChoBkdAYXCdPLxI8WgHTegDaAhHQJT8lGc4HX51fZQoaAZHQGWh+JP69ChoB03oA2gIR0CVAO4UN8VpdX2UKGgGR0BdUdx+8XenaAdN6ANoCEdAlQZT8tPHk3V9lChoBkdAXXXwG4ZuRGgHTegDaAhHQJUNT2FnIyV1fZQoaAZHQGAhUUoKD01oB03oA2gIR0CVD7KxLTQWdX2UKGgGR8BDXLVvuPV/aAdNHwFoCEdAlRaysOoYN3V9lChoBkdAPHEzXSSeRWgHTQgBaAhHQJUhnbDdgv11fZQoaAZHQFiF7T2FnI1oB03oA2gIR0CVIhFhoduHdX2UKGgGR0BjLK/O+qR2aAdN6ANoCEdAlSMxyS3b23V9lChoBkdAZfGiFj/dZmgHTegDaAhHQJUj/1ZkkKN1fZQoaAZHQGCPumzjWCpoB03oA2gIR0CVJ8cPvrnldX2UKGgGR0A6DRL9MsYmaAdNIAFoCEdAlUHalUIcBHV9lChoBkdAX9Sc8TzunmgHTegDaAhHQJVB84LkS291fZQoaAZHQGUJskIHC41oB03oA2gIR0CVRLmdAgPmdX2UKGgGR0BgKgEr5IpZaAdN6ANoCEdAlUatN8E3bXV9lChoBkdAZUiOI68xsWgHTegDaAhHQJVKXBEa2nd1fZQoaAZHQFwXJd0JWvNoB03oA2gIR0CVS2C0WuYAdX2UKGgGR0BiL2LaVUuMaAdN6ANoCEdAlVb+LR8c/HV9lChoBkdAYM7vaURnOGgHTegDaAhHQJVXHZGrjo91fZQoaAZHQGNTl0xM361oB03oA2gIR0CVWXgqmTC+dX2UKGgGR0BlVsi8nNPhaAdN6ANoCEdAlWC2plz2e3V9lChoBkdAYw8G34Kx92gHTegDaAhHQJVqUeMhouh1fZQoaAZHQGNheKKpDNRoB03oA2gIR0CVgYGO+7DmdX2UKGgGR0BjkCmhufmLaAdN6ANoCEdAlYIMWfseGXV9lChoBkdAZSv+n62v0WgHTegDaAhHQJWDIkWykbh1fZQoaAZHQF1b4hEBsANoB03oA2gIR0CVg8vPC2tudX2UKGgGR0BcKOs1baAXaAdN6ANoCEdAlYchHww0wnV9lChoBkdAYEDgjyFwk2gHTegDaAhHQJWLXnr6ciJ1fZQoaAZHQF8vaEi+tbNoB03oA2gIR0CVi28Hv+fidX2UKGgGR0Bkj6Cg9NeuaAdN6ANoCEdAlZ0hL0z0pXV9lChoBkdAZiXCTEBKc2gHTegDaAhHQJWe5BgNPP91fZQoaAZHQCUZkRSP2f1oB00QAWgIR0CVocLlFMIvdX2UKGgGR0BaWWFFlTWHaAdN6ANoCEdAlaJWseXAunV9lChoBkdAZkGRg7YChmgHTegDaAhHQJWjVn13+uN1fZQoaAZHQGLvt9H+ZPVoB03oA2gIR0CVr/N7BwdbdX2UKGgGR0BjsDyz5XU6aAdN6ANoCEdAlbAmDHwPRXV9lChoBkdAXLfaM72crmgHTegDaAhHQJWzUQf6oEV1fZQoaAZHQGTQ0kWykbhoB03oA2gIR0CVvXUbkwN9dX2UKGgGR0Bgzs3l0YCRaAdN6ANoCEdAlchMiOearnV9lChoBkdAYnDv60pmVmgHTegDaAhHQJXZ8eyRjjJ1fZQoaAZHQGBtO7QLNOdoB03oA2gIR0CV23dK/VRUdX2UKGgGR0BdnfAwfyPNaAdN6ANoCEdAldwvU8V58nV9lChoBkdAYwG6hg3Lm2gHTegDaAhHQJXf8pkPMB91fZQoaAZHQGWTq6WgOBloB03oA2gIR0CV5SZ8a4tpdX2UKGgGR0BX85rcj7hvaAdN6ANoCEdAleU5n6Eal3V9lChoBkdAY+YJLM9r42gHTegDaAhHQJXncAHVwxZ1fZQoaAZHQGC0tjkMkQhoB03oA2gIR0CV/0XL/0dzdX2UKGgGR0BZzGzF+/g0aAdN6ANoCEdAlgKqvFFUhnV9lChoBkdAWfo+dK/VRWgHTegDaAhHQJYDU4p+c6N1fZQoaAZHQD7k2ycCo0hoB00JAWgIR0CWA6tpmEoOdX2UKGgGR0BmyeTJQtSRaAdN6ANoCEdAlgRTIaLn93V9lChoBkdAMLV5GBnSOWgHTTIBaAhHQJYEVGEwnIB1fZQoaAZHQDHHtfG+9J1oB0u3aAhHQJYNg5R0lqt1fZQoaAZHQGLGLehwl0JoB03oA2gIR0CWDoQ8OkLydX2UKGgGR0Bjf9pXZGrkaAdN6ANoCEdAlg6cotthu3V9lChoBkdAZAWqR2bG3mgHTegDaAhHQJYQsGfPHDJ1fZQoaAZHQEiJxQzk6tFoB00RAWgIR0CWE42yLQ5WdX2UKGgGR0BmqfKU3XI2aAdN6ANoCEdAlhc5vUBnz3V9lChoBkdAZGYBFuvU0GgHTegDaAhHQJYfPEKmbb11fZQoaAZHQDp3R1HOKO1oB0vsaAhHQJYm46IWP911fZQoaAZHQFxoz6JqIrRoB03oA2gIR0CWNfoakyk9dX2UKGgGR0BhdNutOmBOaAdN6ANoCEdAljyVJtix3XV9lChoBkdAYqnDGcWj5GgHTegDaAhHQJZD+pOvdM11fZQoaAZHQFtTyAxzq8loB03oA2gIR0CWRBSYgJTmdX2UKGgGR0Bg7VqgyuZDaAdN6ANoCEdAlkcmax5cDHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c689d8ade955bb2c4310a938e2f51fb21fd2188d3fd97b9fa61f19e86442d8ee
|
3 |
+
size 146756
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fcf5b4ffd00>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcf5b4ffd90>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcf5b4ffe20>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcf5b4ffeb0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fcf5b4fff40>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fcf5b514040>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fcf5b5140d0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcf5b514160>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fcf5b5141f0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcf5b514280>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcf5b514310>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcf5b5143a0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fcf5b505340>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000.0,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1693396270319593631,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACblsz32yBs5+CmNu3yJrjWGc3m7lrKmOgAAgD8AAIA/M0Obu4WT1blK6No2AK4uMj9fQTumBQK2AACAPwAAgD8zU+879jxyuvV3TLjtq3izFnodOubtbjcAAIA/AACAP9q+wj3DXT66Dl0xuGoAsLX71mi7Y6NONwAAgD8AAIA/5qY9PeHShLp7Ils5MXhUNArAMLsOQH+4AACAPwAAgD8Avdu9KTBNumNcpbtd7tg2pFouOtCVmzoAAIA/AACAP5p+7DwUhIO6Q2bRus8/3LWRQsW6rkP0OQAAgD8AAIA/s1PnveEYmbotFXq6N60oNy2QvjiKG4g5AACAPwAAgD+asnM9LNmxP57abz7R+4u+gVZYPQ26Dz0AAAAAAAAAAM0/sLxSqOm5nvyGOTnbEjUjNSU7WfWeuAAAgD8AAIA/zTRRPKhkuz7KAGs+WhhLvh69oT0231E9AAAAAAAAAABNQzo+2NsuP+sxH73ZCoe+G+IqPSut1LwAAAAAAAAAAAAj8TzDYWq6j4wsuZcBKLRZYtW6Km1KOAAAgD8AAIA/wA6Fvqofqj/yHWC+5a9+vmRHZr4/jZs9AAAAAAAAAAANtLc9e7yAuv6LK7uGfF62ok8Bu/CZRzoAAAAAAACAP9jSor5Vkp4/9wamvhGumr6yJIq+GKDdPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGWKFd1MdtGMAWyUTegDjAF0lEdAlENZIxxku3V9lChoBkdAYuJQzk6tDGgHTegDaAhHQJRIDlzU7S11fZQoaAZHQGVo5jQRf4RoB03oA2gIR0CUTYRmK64EdX2UKGgGR0A3Wkxyn1nNaAdL+GgIR0CUVDoIfKZEdX2UKGgGR0Bjgn4EfT1DaAdN6ANoCEdAlFU76P8ye3V9lChoBkdAYzH+fAbhnGgHTegDaAhHQJRWfrWy1NR1fZQoaAZHQGNh9szl90BoB03oA2gIR0CUYFtlqagFdX2UKGgGR0Bf0pRoAXEZaAdN6ANoCEdAlGWr7Gecx3V9lChoBkdAZBXL2YfGMmgHTegDaAhHQJRm8zWPLgZ1fZQoaAZHQGBQdjG1hLJoB03oA2gIR0CUZ96O5rgwdX2UKGgGR0BhYQiiZfD2aAdN6ANoCEdAlGvdZA6dUnV9lChoBkdAZL1kxyn1nWgHTegDaAhHQJSEtAs052h1fZQoaAZHQGPui2lVLjBoB03oA2gIR0CUimxpcophdX2UKGgGR0Bj6rXFtKqXaAdN6ANoCEdAlI/qgyuZC3V9lChoBkdAYUOI1tO2zGgHTegDaAhHQJSdjndO6/Z1fZQoaAZHQGA2m6oVEeBoB03oA2gIR0CUnbg6EJ0GdX2UKGgGR0BjH9nbqQiiaAdN6ANoCEdAlKBuXiR4hXV9lChoBkdAZb41jRUm2WgHTegDaAhHQJSkBRBNVR11fZQoaAZHQGHX37+DOC5oB03oA2gIR0CUqDEA5q/NdX2UKGgGR0BjUu9+PRzBaAdN6ANoCEdAlK7vmxMWXXV9lChoBkdAYveYqG1x82gHTegDaAhHQJSv5zltCRh1fZQoaAZHQGXf60IC2c9oB03oA2gIR0CUsRdDpkf+dX2UKGgGR0BdKdgKF7D3aAdN6ANoCEdAlLz8CkoF3nV9lChoBkdAXwKTq0MPSWgHTegDaAhHQJTEeaOPvKF1fZQoaAZHQGM7iCSRr8BoB03oA2gIR0CUxkj2i+L4dX2UKGgGR0BlKhdB0IToaAdN6ANoCEdAlMeHCoCMgnV9lChoBkdADcW6bvw3HmgHTRYBaAhHQJTIahtcfNl1fZQoaAZHQGJvjO9nK4hoB03oA2gIR0CUy/v5gw49dX2UKGgGR0Bfo1rAP/aQaAdN6ANoCEdAlODMEeQuEnV9lChoBkdAR3hw84gieWgHTRQBaAhHQJTizSofjjt1fZQoaAZHQFpxubqhUR5oB03oA2gIR0CU5N9YwIt2dX2UKGgGR0AwuYNRWLgoaAdNLQFoCEdAlOjTIikftHV9lChoBkdAZQvQHAymAWgHTegDaAhHQJTp8hGH58B1fZQoaAZHQGbpDkMkQf9oB03oA2gIR0CU+Q4zJp35dX2UKGgGR0Bh8eTA31jBaAdN6ANoCEdAlPlB6a9bo3V9lChoBkdAYXCdPLxI8WgHTegDaAhHQJT8lGc4HX51fZQoaAZHQGWh+JP69ChoB03oA2gIR0CVAO4UN8VpdX2UKGgGR0BdUdx+8XenaAdN6ANoCEdAlQZT8tPHk3V9lChoBkdAXXXwG4ZuRGgHTegDaAhHQJUNT2FnIyV1fZQoaAZHQGAhUUoKD01oB03oA2gIR0CVD7KxLTQWdX2UKGgGR8BDXLVvuPV/aAdNHwFoCEdAlRaysOoYN3V9lChoBkdAPHEzXSSeRWgHTQgBaAhHQJUhnbDdgv11fZQoaAZHQFiF7T2FnI1oB03oA2gIR0CVIhFhoduHdX2UKGgGR0BjLK/O+qR2aAdN6ANoCEdAlSMxyS3b23V9lChoBkdAZfGiFj/dZmgHTegDaAhHQJUj/1ZkkKN1fZQoaAZHQGCPumzjWCpoB03oA2gIR0CVJ8cPvrnldX2UKGgGR0A6DRL9MsYmaAdNIAFoCEdAlUHalUIcBHV9lChoBkdAX9Sc8TzunmgHTegDaAhHQJVB84LkS291fZQoaAZHQGUJskIHC41oB03oA2gIR0CVRLmdAgPmdX2UKGgGR0BgKgEr5IpZaAdN6ANoCEdAlUatN8E3bXV9lChoBkdAZUiOI68xsWgHTegDaAhHQJVKXBEa2nd1fZQoaAZHQFwXJd0JWvNoB03oA2gIR0CVS2C0WuYAdX2UKGgGR0BiL2LaVUuMaAdN6ANoCEdAlVb+LR8c/HV9lChoBkdAYM7vaURnOGgHTegDaAhHQJVXHZGrjo91fZQoaAZHQGNTl0xM361oB03oA2gIR0CVWXgqmTC+dX2UKGgGR0BlVsi8nNPhaAdN6ANoCEdAlWC2plz2e3V9lChoBkdAYw8G34Kx92gHTegDaAhHQJVqUeMhouh1fZQoaAZHQGNheKKpDNRoB03oA2gIR0CVgYGO+7DmdX2UKGgGR0BjkCmhufmLaAdN6ANoCEdAlYIMWfseGXV9lChoBkdAZSv+n62v0WgHTegDaAhHQJWDIkWykbh1fZQoaAZHQF1b4hEBsANoB03oA2gIR0CVg8vPC2tudX2UKGgGR0BcKOs1baAXaAdN6ANoCEdAlYchHww0wnV9lChoBkdAYEDgjyFwk2gHTegDaAhHQJWLXnr6ciJ1fZQoaAZHQF8vaEi+tbNoB03oA2gIR0CVi28Hv+fidX2UKGgGR0Bkj6Cg9NeuaAdN6ANoCEdAlZ0hL0z0pXV9lChoBkdAZiXCTEBKc2gHTegDaAhHQJWe5BgNPP91fZQoaAZHQCUZkRSP2f1oB00QAWgIR0CVocLlFMIvdX2UKGgGR0BaWWFFlTWHaAdN6ANoCEdAlaJWseXAunV9lChoBkdAZkGRg7YChmgHTegDaAhHQJWjVn13+uN1fZQoaAZHQGLvt9H+ZPVoB03oA2gIR0CVr/N7BwdbdX2UKGgGR0BjsDyz5XU6aAdN6ANoCEdAlbAmDHwPRXV9lChoBkdAXLfaM72crmgHTegDaAhHQJWzUQf6oEV1fZQoaAZHQGTQ0kWykbhoB03oA2gIR0CVvXUbkwN9dX2UKGgGR0Bgzs3l0YCRaAdN6ANoCEdAlchMiOearnV9lChoBkdAYnDv60pmVmgHTegDaAhHQJXZ8eyRjjJ1fZQoaAZHQGBtO7QLNOdoB03oA2gIR0CV23dK/VRUdX2UKGgGR0BdnfAwfyPNaAdN6ANoCEdAldwvU8V58nV9lChoBkdAYwG6hg3Lm2gHTegDaAhHQJXf8pkPMB91fZQoaAZHQGWTq6WgOBloB03oA2gIR0CV5SZ8a4tpdX2UKGgGR0BX85rcj7hvaAdN6ANoCEdAleU5n6Eal3V9lChoBkdAY+YJLM9r42gHTegDaAhHQJXncAHVwxZ1fZQoaAZHQGC0tjkMkQhoB03oA2gIR0CV/0XL/0dzdX2UKGgGR0BZzGzF+/g0aAdN6ANoCEdAlgKqvFFUhnV9lChoBkdAWfo+dK/VRWgHTegDaAhHQJYDU4p+c6N1fZQoaAZHQD7k2ycCo0hoB00JAWgIR0CWA6tpmEoOdX2UKGgGR0BmyeTJQtSRaAdN6ANoCEdAlgRTIaLn93V9lChoBkdAMLV5GBnSOWgHTTIBaAhHQJYEVGEwnIB1fZQoaAZHQDHHtfG+9J1oB0u3aAhHQJYNg5R0lqt1fZQoaAZHQGLGLehwl0JoB03oA2gIR0CWDoQ8OkLydX2UKGgGR0Bjf9pXZGrkaAdN6ANoCEdAlg6cotthu3V9lChoBkdAZAWqR2bG3mgHTegDaAhHQJYQsGfPHDJ1fZQoaAZHQEiJxQzk6tFoB00RAWgIR0CWE42yLQ5WdX2UKGgGR0BmqfKU3XI2aAdN6ANoCEdAlhc5vUBnz3V9lChoBkdAZGYBFuvU0GgHTegDaAhHQJYfPEKmbb11fZQoaAZHQDp3R1HOKO1oB0vsaAhHQJYm46IWP911fZQoaAZHQFxoz6JqIrRoB03oA2gIR0CWNfoakyk9dX2UKGgGR0BhdNutOmBOaAdN6ANoCEdAljyVJtix3XV9lChoBkdAYqnDGcWj5GgHTegDaAhHQJZD+pOvdM11fZQoaAZHQFtTyAxzq8loB03oA2gIR0CWRBSYgJTmdX2UKGgGR0Bg7VqgyuZDaAdN6ANoCEdAlkcmax5cDHVlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9007184807deb0289622e10a9c199fa7d8dacf1c5f2cb303e14ad234a33b29af
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0e3f7a0a61d775872f1a4b12a9a792e75f49e072bc91b811ad0dac17cdab1f80
|
3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (172 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 223.56238539999998, "std_reward": 75.21459318370476, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-30T12:33:10.394749"}
|