File size: 1,418 Bytes
715cd16 1967d9b 715cd16 1967d9b 715cd16 1967d9b 715cd16 1967d9b 715cd16 e0a2d06 715cd16 1967d9b 715cd16 1967d9b 715cd16 1967d9b 715cd16 1967d9b 715cd16 1967d9b 715cd16 1967d9b 715cd16 1967d9b 715cd16 1967d9b 715cd16 1967d9b 715cd16 1967d9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
---
language:
- en
license: apache-2.0
library_name: transformers
tags:
- orpo
- Phi 3
base_model:
- microsoft/Phi-3-mini-128k-instruct
datasets:
- mlabonne/orpo-dpo-mix-40k
---
# Orpo-Phi3-3B-128K
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/64fc6d81d75293f417fee1d1/LOJemGwVIPOK4xTczt2MZ.jpeg)
This is an ORPO fine-tune of [microsoft/Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct) on 10k samples of [mlabonne/orpo-dpo-mix-40k](https://huggingface.co/datasets/mlabonne/orpo-dpo-mix-40k).
## ๐ป Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Muhammad2003/Orpo-Phi3-3B-128K"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
## ๐ Training curves
Wandb Report
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64fc6d81d75293f417fee1d1/uOFRuGlp6z6WLeRDL3sLA.png)
## ๐ Evaluation
Coming Soon! |