File size: 1,418 Bytes
715cd16
1967d9b
 
 
715cd16
1967d9b
 
 
 
 
 
 
715cd16
 
1967d9b
715cd16
1967d9b
715cd16
e0a2d06
715cd16
1967d9b
715cd16
1967d9b
 
715cd16
1967d9b
 
 
715cd16
1967d9b
 
715cd16
1967d9b
 
 
 
 
 
 
 
715cd16
1967d9b
 
 
715cd16
1967d9b
715cd16
1967d9b
715cd16
1967d9b
715cd16
1967d9b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
---
language:
- en
license: apache-2.0
library_name: transformers
tags:
- orpo
- Phi 3
base_model:
- microsoft/Phi-3-mini-128k-instruct
datasets:
- mlabonne/orpo-dpo-mix-40k
---

# Orpo-Phi3-3B-128K

![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/64fc6d81d75293f417fee1d1/LOJemGwVIPOK4xTczt2MZ.jpeg)

This is an ORPO fine-tune of [microsoft/Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct) on 10k samples of [mlabonne/orpo-dpo-mix-40k](https://huggingface.co/datasets/mlabonne/orpo-dpo-mix-40k).

## ๐Ÿ’ป Usage

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "Muhammad2003/Orpo-Phi3-3B-128K"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```

## ๐Ÿ“ˆ Training curves

Wandb Report

![image/png](https://cdn-uploads.huggingface.co/production/uploads/64fc6d81d75293f417fee1d1/uOFRuGlp6z6WLeRDL3sLA.png)

## ๐Ÿ† Evaluation
Coming Soon!