--- license: mit base_model: microsoft/Florence-2-large-ft tags: - image-to-text - generated_from_trainer model-index: - name: Florence-2-large-FormClassification-ft results: [] --- # Florence-2-large-FormClassification-ft This model is a fine-tuned version of [microsoft/Florence-2-large-ft](https://huggingface.co/microsoft/Florence-2-large-ft) on an Musa07/Florence_ft dataset. It achieves the following results on the evaluation set: - Loss: 0.2107 ### Inference Code ```python # Code from transformers import AutoProcessor, AutoModelForCausalLM import matplotlib.pyplot as plt import matplotlib.patches as patches model = AutoModelForCausalLM.from_pretrained("Musa07/Florence-2-large-FormClassification-ft", trust_remote_code=True, device_map='cuda') # Load the model on GPU if available processor = AutoProcessor.from_pretrained("Musa07/Florence-2-large-FormClassification-ft", trust_remote_code=True) def run_example(task_prompt, image, max_new_tokens=128): prompt = task_prompt inputs = processor(text=prompt, images=image, return_tensors="pt") generated_ids = model.generate( input_ids=inputs["input_ids"].cuda(), pixel_values=inputs["pixel_values"].cuda(), max_new_tokens=max_new_tokens, early_stopping=False, do_sample=False, num_beams=3, ) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0] parsed_answer = processor.post_process_generation( generated_text, task=task_prompt, image_size=(image.width, image.height) ) return parsed_answer def plot_bbox(image, data): fig, ax = plt.subplots() # Display the image ax.imshow(image) # Plot each bounding box for bbox, label in zip(data['bboxes'], data['labels']): # Unpack the bounding box coordinates x1, y1, x2, y2 = bbox # Create a Rectangle patch rect = patches.Rectangle((x1, y1), x2-x1, y2-y1, linewidth=1, edgecolor='r', facecolor='none') # Add the rectangle to the Axes ax.add_patch(rect) # Annotate the label plt.text(x1, y1, label, color='white', fontsize=8, bbox=dict(facecolor='red', alpha=0.5)) # Remove the axis ticks and labels ax.axis('off') # Show the plot plt.show() image = Image.open('1.jpeg') parsed_answer = run_example("", image=image) print(parsed_answer) plot_bbox(image, parsed_answer[""]) ``` ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0188 | 1.0 | 23 | 0.2151 | | 0.0127 | 2.0 | 46 | 0.2113 | | 0.0078 | 3.0 | 69 | 0.2061 | | 0.0047 | 4.0 | 92 | 0.2102 | | 0.0042 | 5.0 | 115 | 0.2078 | | 0.003 | 6.0 | 138 | 0.2108 | | 0.0022 | 7.0 | 161 | 0.2110 | | 0.0029 | 8.0 | 184 | 0.2117 | | 0.0019 | 9.0 | 207 | 0.2114 | | 0.0023 | 10.0 | 230 | 0.2107 | ### Framework versions - Transformers 4.44.0.dev0 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1