{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6b3c3eb1c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1711613285430125063, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0sO7v2THG6dftQvc9RBTPdHjc63PUgsgAAgD8AAIA/mgtTPBREhLqWUcOydENcsJQ9ILh7cKYzAACAPwAAgD/N8ns9iMKyPUsmXb5ekkm+cgRzu7ICRb0AAAAAAAAAAABlyrw4BKw/GWpDvg5Tv76jFG69VlNuvgAAAAAAAAAAALCeOrykNj3IBN+9DyA1vqPKgD1itY+8AAAAAAAAAADmqjA9K1UHP4JB8LwvWdm+U8FFPfDTlrsAAAAAAAAAAJrJuTspgGy61wiMOTduIDX0cI07D1OguAAAgD8AAIA/mi0VPaQAQblqIPa8+aOEsBYEOzlF4lkzAACAPwAAgD/ajfc9zxF6Psmjg74yGVm+q/fHPB/By70AAAAAAAAAAForzz2Awxg/ZSQkvl3Swb5OeNA9hrgQvgAAAAAAAAAATdmgPXGNebn+Zpa2ZtHOMPHsATqg2Lg1AACAPwAAAACgLB0+uyuSP903iD57sg2/pxs0PkSgqD0AAAAAAAAAAM0UxTvYhzc/KnoyPvfgBb8k+zu9XrJ2PQAAAAAAAAAA8/eBvkxFBD+KSSU+0Mu2vknA+L3fahU+AAAAAAAAAAAt8U8+kXt6Pyg1zT6Tmgu/yEB+Pqh41boAAAAAAAAAABoMvD21Xzk/rWCZPQrbwL60SOk9RaPSPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVEwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGxmExh2GIuMAWyUTSgBjAF0lEdAk4SGFi8WbnV9lChoBkdAcTgwQDmr82gHS+ZoCEdAk4WFYEGJN3V9lChoBkdAcwsK508vEmgHS9xoCEdAk4Zucx0uDnV9lChoBkdAcv+LGJememgHTRsBaAhHQJOG2P2f0291fZQoaAZHQG/E8LKFIupoB0vuaAhHQJOH6ymhufp1fZQoaAZHQHKKL52yLQ5oB00DAWgIR0CTiK1/Ue+3dX2UKGgGR0BxprpJPIn0aAdL7mgIR0CTilqN6w+udX2UKGgGR0By4bIjnmq6aAdNOAFoCEdAk4p68L8aXXV9lChoBkdAbdunF5v9+GgHTWoBaAhHQJOLLb349HN1fZQoaAZHQHInSLQ5WBBoB00KAWgIR0CTi8MC9ytFdX2UKGgGR0BwxmvPkaMraAdNFgFoCEdAk4x76k6903V9lChoBkdAb/Knpjc2zmgHS+BoCEdAk4yvVZs9CHV9lChoBkdAcHnVJcxCY2gHTQMBaAhHQJON2MNtqHp1fZQoaAZHQHAA7lmvnr9oB0vgaAhHQJOO73PAwf11fZQoaAZHQHFL5rLyMDRoB0vraAhHQJOPDQID5j91fZQoaAZHQHD+WVeKKpFoB00oAWgIR0CTjyWHUMG5dX2UKGgGR0BzvWjBVMmGaAdL9GgIR0CTkOkUbkwOdX2UKGgGR0BwPckTpPhyaAdNFwFoCEdAk5GaFRHf/HV9lChoBkdAcq5ePJaJRGgHS/RoCEdAk5IHenAIp3V9lChoBkdAcrvZYxL0z2gHTRQBaAhHQJOSdcxCY1J1fZQoaAZHQHHMAbyYoiNoB0vyaAhHQJOShaOgg5l1fZQoaAZHQHHmSDEm6XloB00BAWgIR0CTlDtsenyedX2UKGgGR0ByJ8YbbUPQaAdL32gIR0CTlJgg5imVdX2UKGgGR0ByGoCcPOIJaAdL8GgIR0CTlLZK3/gjdX2UKGgGR0By6pFnZkCnaAdL4GgIR0CTlktRNyo5dX2UKGgGR0BxFsmUnogWaAdNKQFoCEdAk5Z8sUZeiXV9lChoBkdAcSYfTkQwsWgHTTABaAhHQJOX/9zfaYh1fZQoaAZHQHAe53C9AX5oB0vzaAhHQJOYiiM5wOx1fZQoaAZHQHCYe1fE4vNoB00IAWgIR0CTmU1yeZogdX2UKGgGR0Bv+xwCKaXsaAdNGAFoCEdAk5nTWK/EfnV9lChoBkdAcPVZzPrv9mgHS+FoCEdAk5qHTmW+oXV9lChoBkdAclJVRk3CK2gHS/toCEdAk5rZzDGcWnV9lChoBkdAb8bn5i3G42gHS+VoCEdAk5uFa4c3l3V9lChoBkdAb1TlNDc/MWgHTQQBaAhHQJOc0RZlnRN1fZQoaAZHQHE8uiN83MpoB0vjaAhHQJOdqoDPnjh1fZQoaAZHQG6sVDa4+bFoB0vzaAhHQJOeNLoOhCd1fZQoaAZHQHKz0nkT6BRoB00GAWgIR0CTnqx95QgtdX2UKGgGR0BxClM/QjUvaAdNAgFoCEdAk6DSWAwwkHV9lChoBkdAOrbJjlPrOmgHS71oCEdAk6DgDifg8HV9lChoBkdAZWVcXWOIZmgHTegDaAhHQJOh5yzXz191fZQoaAZHQHBe63uuzQhoB00lAWgIR0CTtE51eSjhdX2UKGgGR0BuDPo/zJ6qaAdNAQFoCEdAk7VreuV5bHV9lChoBkdAcIXCvovBamgHTRYBaAhHQJO14TTOPeZ1fZQoaAZHQG9T2Y4Qz1toB029AWgIR0CTtqiW3Sa3dX2UKGgGR0Byqplum78OaAdNDwFoCEdAk7e+uJUHZHV9lChoBkdAcaqI5HVf/mgHS/toCEdAk7gOwPiDNHV9lChoBkdAcmdvUz9CNWgHTRgBaAhHQJO5B2zOX3R1fZQoaAZHQHG6ub/ffoBoB00BAWgIR0CTuS1uzhP1dX2UKGgGR0BwttF+d9UkaAdNAwFoCEdAk7rWtp22X3V9lChoBkdAb8xWSU1Q7GgHS/JoCEdAk7sbVnVXm3V9lChoBkdAcxMNCZ4Oc2gHS/poCEdAk7ze2VmjCnV9lChoBkdAcj92ll9SdmgHTSIBaAhHQJO9+uGKyfN1fZQoaAZHQG+K19F4LThoB0vsaAhHQJO/WsbNr0t1fZQoaAZHQG74/9pAUtZoB00RAWgIR0CTv+hz/6wddX2UKGgGR0Bw+OzC1qnFaAdL7GgIR0CTwG4lQdjodX2UKGgGR0BwzBdMTN+taAdNAAFoCEdAk8BuIMz/InV9lChoBkdAcWykbPyCnWgHTSgBaAhHQJPAzSa3I+51fZQoaAZHQG8sQ1aW5YpoB0v5aAhHQJPByB19v0h1fZQoaAZHQHFAMD8tPHloB0vjaAhHQJPByYc/+sJ1fZQoaAZHQHC8lrZamoBoB0vkaAhHQJPCFfb9If91fZQoaAZHQHE0Ozt1IRRoB00WAWgIR0CTwlGvOhTPdX2UKGgGR0BzHCgdwNsnaAdL4WgIR0CTwqtjCpFTdX2UKGgGR0BviIGSpzcRaAdL9GgIR0CTw1me18b8dX2UKGgGR0ByQBtqHoHLaAdL7GgIR0CTxDPuG9HudX2UKGgGR0ByTrt+kP+XaAdL9WgIR0CTxK1X/5tWdX2UKGgGR0BaGylrM1TBaAdN6ANoCEdAk8Vaguh9LHV9lChoBkdAcqDVyWAwwmgHTQwBaAhHQJPGgSCe2/l1fZQoaAZHQHMlk1VHWjJoB0v6aAhHQJPG2CWeHzp1fZQoaAZHQG0sWluWKMxoB0v5aAhHQJPIEf7rLQp1fZQoaAZHQHLQkGiYb85oB0vwaAhHQJPIuRW912d1fZQoaAZHQHIl4YixFApoB00RAWgIR0CTygLKV6eHdX2UKGgGR0BxSmUHIIWyaAdNCwFoCEdAk8olK02LpHV9lChoBkdAbxwGmk30gGgHS+5oCEdAk8pZdv863nV9lChoBkdAbi3jLjghr2gHS/RoCEdAk8rGl/H5rXV9lChoBkdAcYmE87p3YGgHTQIBaAhHQJPKxrEcbR51fZQoaAZHQHA+/fGdZq5oB00IAWgIR0CTyvRq46OpdX2UKGgGR0BtGD7sOXmeaAdL4mgIR0CTyzeWv8qGdX2UKGgGR0By5UTsY2sJaAdNQQFoCEdAk82l90A93nV9lChoBkdAbur0yP+4smgHS+9oCEdAk826nm7rcHV9lChoBkdAcCtLzwtrbmgHS/RoCEdAk8+VUEPlMnV9lChoBkdAcED1h9b5dmgHTUEBaAhHQJPQB1dPci51fZQoaAZHQHFHA+dK/VRoB00NAWgIR0CT0Cz/6wdKdX2UKGgGR0ByAtnSOR1YaAdL8GgIR0CT0Ksv7FbWdX2UKGgGR0BycgY0l7dBaAdL4GgIR0CT0LX2/SH/dX2UKGgGR0ByMFAiV0LdaAdNAwJoCEdAk9IH5eqrBHV9lChoBkdAclhuE25xzmgHS+9oCEdAk9Jt/e+EiHV9lChoBkdAcWIlC1JDmmgHS/5oCEdAk9NH++/QB3V9lChoBkdAcV6WsA/9pGgHTQgBaAhHQJPTd3+uNgl1fZQoaAZHQHABUuL74ztoB00JAWgIR0CT1E6UJOWTdX2UKGgGR0By9+a4MF2WaAdNMwFoCEdAk9Wg2qDK5nV9lChoBkdAb8Ar2g398GgHTSsBaAhHQJPV5UGVzIV1fZQoaAZHQHIwBxT850doB0v9aAhHQJPW4tuk1uR1fZQoaAZHQHK4FrVOKwZoB00fAWgIR0CT2EiC8OCodX2UKGgGR0Bsyd7SiM5waAdL9mgIR0CT2KPZqVQidX2UKGgGR0BvxfmaH9FXaAdNiwFoCEdAk9j/CqIacnV9lChoBkdAcIsYqG1x82gHS/9oCEdAk9mL655JLHV9lChoBkdAbsUwZflZHWgHS/RoCEdAk9moAbQ1JnV9lChoBkdAcUvIMSbpeWgHTRQBaAhHQJPaJ3cHnlp1fZQoaAZHQHF4Jmh/RVpoB00HAWgIR0CT2lqyWzF/dX2UKGgGR0ByBZTsIE8raAdL/2gIR0CT22jBVMmGdWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "False", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}