Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Spider-TriviaQA: Context Encoder
|
2 |
+
|
3 |
+
This is the context encoder of the model fine-tuned on TriviaQA (and initialized from Spider) discussed in our paper [Learning to Retrieve Passages without Supervision](https://arxiv.org/abs/2112.07708).
|
4 |
+
|
5 |
+
## Usage
|
6 |
+
|
7 |
+
We used weight sharing for the query encoder and passage encoder, so the same model should be applied for both.
|
8 |
+
|
9 |
+
**Note**! We format the passages similar to DPR, i.e. the title and the text are separated by a `[SEP]` token, but token
|
10 |
+
type ids are all 0-s.
|
11 |
+
|
12 |
+
An example usage:
|
13 |
+
|
14 |
+
```python
|
15 |
+
from transformers import AutoTokenizer, DPRQuestionEncoder
|
16 |
+
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained("NAACL2022/spider-trivia-ctx-encoder")
|
18 |
+
model = DPRQuestionEncoder.from_pretrained("NAACL2022/spider-trivia-ctx-encoder")
|
19 |
+
|
20 |
+
question = "Who is the villain in lord of the rings"
|
21 |
+
input_dict = tokenizer(question, return_tensors="pt")
|
22 |
+
del input_dict["token_type_ids"]
|
23 |
+
|
24 |
+
outputs = model(**input_dict)
|
25 |
+
```
|