omarelshehy commited on
Commit
17e8334
1 Parent(s): 7fc2237

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -5
README.md CHANGED
@@ -13,9 +13,9 @@ datasets:
13
  - unicamp-dl/mmarco
14
  ---
15
 
16
- # GATE-Reranker-V1 🚀✨
17
 
18
- **NAMAA-space** releases **Rerankerv1**, a high-performance model fine-tuned on [unicamp-dl/mmarco](https://huggingface.co/datasets/unicamp-dl/mmarco) to elevate Arabic document retrieval and ranking to new heights! 📚🇸🇦
19
 
20
  This model is designed to **improve search relevance** of **arabic** documents by accurately ranking documents based on their contextual fit for a given query.
21
 
@@ -38,7 +38,7 @@ The usage becomes easier when you have [SentenceTransformers](https://www.sbert.
38
 
39
  ```python
40
  from sentence_transformers import CrossEncoder
41
- model = CrossEncoder('NAMAA-Space/Rerankerv1', max_length=512)
42
 
43
  Query = 'كيف يمكن استخدام التعلم العميق في معالجة الصور الطبية؟'
44
  Paragraph1 = 'التعلم العميق يساعد في تحليل الصور الطبية وتشخيص الأمراض'
@@ -55,11 +55,11 @@ The purpose of this evaluation is to highlight the performance of our model with
55
 
56
  Dataset 1: [NAMAA-Space/Ar-Reranking-Eval](https://huggingface.co/datasets/NAMAA-Space/Ar-Reranking-Eval)
57
 
58
-
59
 
60
  Dataset 2: [NAMAA-Space/Arabic-Reranking-Triplet-5-Eval](https://huggingface.co/datasets/NAMAA-Space/Arabic-Reranking-Triplet-5-Eval)
61
 
62
-
63
 
64
  As seen, The model performs extremly well in comparison to other famous rerankers.
65
 
 
13
  - unicamp-dl/mmarco
14
  ---
15
 
16
+ # Namaa-Reranker-v1 🚀✨
17
 
18
+ **NAMAA-space** releases **Namaa-Reranker-v1**, a high-performance model fine-tuned on [unicamp-dl/mmarco](https://huggingface.co/datasets/unicamp-dl/mmarco) to elevate Arabic document retrieval and ranking to new heights! 📚🇸🇦
19
 
20
  This model is designed to **improve search relevance** of **arabic** documents by accurately ranking documents based on their contextual fit for a given query.
21
 
 
38
 
39
  ```python
40
  from sentence_transformers import CrossEncoder
41
+ model = CrossEncoder('NAMAA-Space/Namaa-Reranker-v1', max_length=512)
42
 
43
  Query = 'كيف يمكن استخدام التعلم العميق في معالجة الصور الطبية؟'
44
  Paragraph1 = 'التعلم العميق يساعد في تحليل الصور الطبية وتشخيص الأمراض'
 
55
 
56
  Dataset 1: [NAMAA-Space/Ar-Reranking-Eval](https://huggingface.co/datasets/NAMAA-Space/Ar-Reranking-Eval)
57
 
58
+ ![Plot](https://huggingface.co/NAMAA-Space/Namaa-Reranker-v1/resolve/main/Dataset1_Evaluation.jpg)
59
 
60
  Dataset 2: [NAMAA-Space/Arabic-Reranking-Triplet-5-Eval](https://huggingface.co/datasets/NAMAA-Space/Arabic-Reranking-Triplet-5-Eval)
61
 
62
+ ![Plot](https://huggingface.co/NAMAA-Space/Namaa-Reranker-v1/resolve/main/Dataset1_Evaluation.jpg)
63
 
64
  As seen, The model performs extremly well in comparison to other famous rerankers.
65