NCJ21 commited on
Commit
640e8c7
·
1 Parent(s): 41f3a36
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 258.51 +/- 21.66
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f77c61efca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f77c61efd30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f77c61efdc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f77c61efe50>", "_build": "<function ActorCriticPolicy._build at 0x7f77c61efee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f77c61eff70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f77c61f3040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f77c61f30d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f77c61f3160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f77c61f31f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f77c61f3280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f77c61ee510>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671664945416011603, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALPRnj32JDm6miSSOQdOF7ZnHbO6M7esuAAAgD8AAIA/ACvrvf+DaD/Tur294gDdvkdwqb3cdUO9AAAAAAAAAAAzdbC8oe0PPvoinj37Iy++hq+ZPSR3vDwAAAAAAAAAACYtsz32LG26W7hjOmBJD7bdJkY716WQuQAAgD8AAIA/sx4yPlvLiLwt9j87xeqFuShm9b31zH26AACAPwAAgD+A0ue9KZBZuuiyazu7yWW2GD87u6OlZLUAAIA/AACAP+b0AT1cRw2632gtuCshxDKyiuy74U5KNwAAgD8AAIA/zU7bPRf7Kj67QJK9KpNKvictaDzgJnK8AAAAAAAAAACmaM69kUJbPscdIj2JLUC+ZKt9vN7Znz0AAAAAAAAAAKaXjr2PUni6PPK5OzSInTeR3TI7+shQNgAAgD8AAIA/WjSHPSmEaLrcJ563RBuzsQYfOLuiabg2AACAPwAAgD8Aghy9ZtssP1qGdj3XQpq+/npNvLYqGz0AAAAAAAAAABrksz3Pin09E+XMvTOLK75a2eG8XUxZvQAAAAAAAAAAQBXSvXuSg7r4CJm6RmyUtfWwQriFebI5AACAPwAAgD+aciQ9FMywuvI7nDdeLpgyDYezOefGsrYAAIA/AACAP/OwjD3hFIi6Ejv2NLndfDA0VKS6+LtatAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYD5ZMVzdMkCUhpRSlIwBbJRL6IwBdJRHQJOTcVk+X7d1fZQoaAZoCWgPQwhYHM786kdgQJSGlFKUaBVN6ANoFkdAk66qf4AS4HV9lChoBmgJaA9DCOmayTdb62RAlIaUUpRoFU3oA2gWR0CTr05Jsfq5dX2UKGgGaAloD0MI3xltVRKtU0CUhpRSlGgVTegDaBZHQJO0289Oh011fZQoaAZoCWgPQwjiH7b0aJtdQJSGlFKUaBVN6ANoFkdAk7UAWFev6nV9lChoBmgJaA9DCG082GI3f2NAlIaUUpRoFU3oA2gWR0CTtxTdtVJddX2UKGgGaAloD0MIMPFHUWcFX0CUhpRSlGgVTegDaBZHQJO8ovUSZjR1fZQoaAZoCWgPQwhTeTvCaXhkQJSGlFKUaBVN6ANoFkdAk8Gfv0AcUHV9lChoBmgJaA9DCG8u/rYnLD1AlIaUUpRoFU0UAWgWR0CTyQ8pCrtFdX2UKGgGaAloD0MIp5NsdTnoZkCUhpRSlGgVTegDaBZHQJPJY384xUN1fZQoaAZoCWgPQwiVDABV3BpjQJSGlFKUaBVN6ANoFkdAk8ntTYNAknV9lChoBmgJaA9DCG0ANiBCrGZAlIaUUpRoFU3oA2gWR0CTz5B5X2dvdX2UKGgGaAloD0MIE5uPa0PvY0CUhpRSlGgVTegDaBZHQJPZ+u6mO2l1fZQoaAZoCWgPQwjFckuroYdiQJSGlFKUaBVN6ANoFkdAk9ocWGh24nV9lChoBmgJaA9DCDQsRl1rhl9AlIaUUpRoFU3oA2gWR0CT3ckDIRywdX2UKGgGaAloD0MIijve5LdsYUCUhpRSlGgVTegDaBZHQJPfL/Mnqml1fZQoaAZoCWgPQwgRxk/j3kxkQJSGlFKUaBVN6ANoFkdAk+YCGnGbTnV9lChoBmgJaA9DCLWNP1HZ7GNAlIaUUpRoFU3oA2gWR0CT5votL+PzdX2UKGgGaAloD0MIqTKMu8GBbECUhpRSlGgVTUMBaBZHQJPtbcclw991fZQoaAZoCWgPQwgLfbCMDQJjQJSGlFKUaBVN6ANoFkdAk+5u/UONHnV9lChoBmgJaA9DCBkCgGNPJWdAlIaUUpRoFU3oA2gWR0CT7v+98JD3dX2UKGgGaAloD0MIH/RsVj2HcECUhpRSlGgVTSoCaBZHQJQEliSaEzx1fZQoaAZoCWgPQwjBb0OM1/1jQJSGlFKUaBVN6ANoFkdAlAZ0srd30XV9lChoBmgJaA9DCPBN02cHU2dAlIaUUpRoFU3oA2gWR0CUBpGeMAFQdX2UKGgGaAloD0MIZf7RN2mgQUCUhpRSlGgVS+VoFkdAlAc6A4GUwHV9lChoBmgJaA9DCIXq5uJvdW9AlIaUUpRoFU0FAmgWR0CUCvNRm9QGdX2UKGgGaAloD0MI4QfnU8fRYECUhpRSlGgVTegDaBZHQJQMhDYywfR1fZQoaAZoCWgPQwgiGAeXjhFdQJSGlFKUaBVN6ANoFkdAlBCaSs8xK3V9lChoBmgJaA9DCGb0o+GUh2JAlIaUUpRoFU3oA2gWR0CUF7CzTnaGdX2UKGgGaAloD0MIXqCkwIJFZECUhpRSlGgVTegDaBZHQJQYB+iJwbV1fZQoaAZoCWgPQwiiDivc8hxcQJSGlFKUaBVN6ANoFkdAlBiJqdpZfXV9lChoBmgJaA9DCCuk/KTa1zZAlIaUUpRoFU0IAWgWR0CUKnYLb5/LdX2UKGgGaAloD0MIu3uA7svncECUhpRSlGgVTc4CaBZHQJQtqP8yeqd1fZQoaAZoCWgPQwgb2CrBYs9hQJSGlFKUaBVN6ANoFkdAlC3/0h/y5XV9lChoBmgJaA9DCB1znrEv5GJAlIaUUpRoFU3oA2gWR0CUL2d5prULdX2UKGgGaAloD0MIvvp46DueY0CUhpRSlGgVTegDaBZHQJQ2KGwiaAp1fZQoaAZoCWgPQwigjVw3ZUJwQJSGlFKUaBVNgwNoFkdAlDkCADq4Y3V9lChoBmgJaA9DCAxcHmvGGWNAlIaUUpRoFU3oA2gWR0CUPViPQv6CdX2UKGgGaAloD0MIVP61vLLRcUCUhpRSlGgVTUUDaBZHQJRUUgW8AaN1fZQoaAZoCWgPQwgclgZ+1HNkQJSGlFKUaBVN6ANoFkdAlFTAnx8UmHV9lChoBmgJaA9DCEYnS633UWNAlIaUUpRoFU3oA2gWR0CUVrchC+lCdX2UKGgGaAloD0MIdTklIKYNZ0CUhpRSlGgVTegDaBZHQJRW1F8XvYx1fZQoaAZoCWgPQwhGJuDXSPpfQJSGlFKUaBVN6ANoFkdAlFd50r9VFXV9lChoBmgJaA9DCIo5CDpaqW9AlIaUUpRoFU3nA2gWR0CUWw+jM3ZPdX2UKGgGaAloD0MIsDkHz4TGK8CUhpRSlGgVS/loFkdAlF3WuDBdlnV9lChoBmgJaA9DCOylKQIcXWJAlIaUUpRoFU3oA2gWR0CUYJ/Tb349dX2UKGgGaAloD0MIHXV0XI1LYUCUhpRSlGgVTegDaBZHQJRnNdMTN+t1fZQoaAZoCWgPQwhS7dPxmIFmQJSGlFKUaBVN6ANoFkdAlGeAz544ZXV9lChoBmgJaA9DCEw1s5YCfG5AlIaUUpRoFU2bAWgWR0CUcwXOnl4kdX2UKGgGaAloD0MIt2EUBI+vYUCUhpRSlGgVTegDaBZHQJR4oJokAxV1fZQoaAZoCWgPQwha1v1jIXRlQJSGlFKUaBVN6ANoFkdAlHsShJyyU3V9lChoBmgJaA9DCCoAxjNob2JAlIaUUpRoFU3oA2gWR0CUe16TGHYZdX2UKGgGaAloD0MIWafK90zScECUhpRSlGgVTXoCaBZHQJR7jPX05EN1fZQoaAZoCWgPQwibkUHuoi1jQJSGlFKUaBVN6ANoFkdAlHyWlZX+2nV9lChoBmgJaA9DCDI9YYkHG2VAlIaUUpRoFU3oA2gWR0CUgrHsC1Z1dX2UKGgGaAloD0MIfjuJCP/OX0CUhpRSlGgVTegDaBZHQJSFYHgP3BZ1fZQoaAZoCWgPQwj7ljldlr5nQJSGlFKUaBVN6ANoFkdAlI2rlRxcV3V9lChoBmgJaA9DCPD49q7Bn2VAlIaUUpRoFU3oA2gWR0CUjh30f5k9dX2UKGgGaAloD0MI5xiQvd5BZUCUhpRSlGgVTegDaBZHQJSjD/uLJjl1fZQoaAZoCWgPQwg3xeOiWpBlQJSGlFKUaBVN6ANoFkdAlKPsUVSGanV9lChoBmgJaA9DCLFppRBIQ2JAlIaUUpRoFU3oA2gWR0CUq2cVxjridX2UKGgGaAloD0MIym5m9COOZUCUhpRSlGgVTegDaBZHQJSugR9PUKB1fZQoaAZoCWgPQwjLDvEPW2dkQJSGlFKUaBVN6ANoFkdAlLWVDfFaS3V9lChoBmgJaA9DCBkg0QQKaWJAlIaUUpRoFU3oA2gWR0CUte6u4gA7dX2UKGgGaAloD0MIKQZINIEzYkCUhpRSlGgVTegDaBZHQJTBfkcS5Ah1fZQoaAZoCWgPQwh+/nvw2o1eQJSGlFKUaBVN6ANoFkdAlMb7IT4+KXV9lChoBmgJaA9DCGYxsfn4LXJAlIaUUpRoFU3gAWgWR0CUyPzAN5MUdX2UKGgGaAloD0MIHy+kw0NEZkCUhpRSlGgVTegDaBZHQJTJSgvlEJB1fZQoaAZoCWgPQwif46PFmXJmQJSGlFKUaBVN6ANoFkdAlMmVxCIDYHV9lChoBmgJaA9DCAJlU65wFmBAlIaUUpRoFU3oA2gWR0CUycH8TBZZdX2UKGgGaAloD0MIpIriVdazXUCUhpRSlGgVTegDaBZHQJTKtNahYeV1fZQoaAZoCWgPQwj9EYYBy15wQJSGlFKUaBVN0gJoFkdAlM2kbLlmvnV9lChoBmgJaA9DCB9q2zCKr2ZAlIaUUpRoFU3oA2gWR0CUz+MbFS88dX2UKGgGaAloD0MIDHcujHS1bECUhpRSlGgVTVMDaBZHQJTRsdfb9Ih1fZQoaAZoCWgPQwgmqOFb2FBnQJSGlFKUaBVN6ANoFkdAlNItDc/MXHV9lChoBmgJaA9DCAINNnUeTXBAlIaUUpRoFU2lA2gWR0CU2Q0+kgwHdX2UKGgGaAloD0MIwXPv4RL3Y0CUhpRSlGgVTegDaBZHQJTaBntfG+91fZQoaAZoCWgPQwhnDkktlPRxQJSGlFKUaBVNDQFoFkdAlPEHdsSCe3V9lChoBmgJaA9DCMnLmljgP3BAlIaUUpRoFU2lAWgWR0CU8zyvcJt0dX2UKGgGaAloD0MI9ifxuZMRZUCUhpRSlGgVTegDaBZHQJT52oXKr7x1fZQoaAZoCWgPQwiKr3YU59BvQJSGlFKUaBVNQQJoFkdAlPrCwB5ooXV9lChoBmgJaA9DCLw+c9anzW5AlIaUUpRoFU0nA2gWR0CU/4/HYHxCdX2UKGgGaAloD0MIgSVXsXiAYkCUhpRSlGgVTegDaBZHQJT/xz90ihZ1fZQoaAZoCWgPQwiPHVTiOpRlQJSGlFKUaBVN6ANoFkdAlQAG0/nnuHV9lChoBmgJaA9DCNGWcymuOHBAlIaUUpRoFU0EA2gWR0CVA4og3cYZdX2UKGgGaAloD0MITpzc7xAucUCUhpRSlGgVTe4BaBZHQJUGh9kSVW11fZQoaAZoCWgPQwgbvK/KRRdwQJSGlFKUaBVN5AJoFkdAlQaqzzErG3V9lChoBmgJaA9DCD0QWaRJPnBAlIaUUpRoFU3pAWgWR0CVCbc0+C9RdX2UKGgGaAloD0MI5PT1fE0PY0CUhpRSlGgVTegDaBZHQJUMjb+Lm6p1fZQoaAZoCWgPQwi1/SsrTWdsQJSGlFKUaBVNDANoFkdAlQyb5RCQcXV9lChoBmgJaA9DCNuK/WW313BAlIaUUpRoFU3LA2gWR0CVDQ2nsLOSdX2UKGgGaAloD0MIlUiil1GGYUCUhpRSlGgVTegDaBZHQJUOkAWBSUF1fZQoaAZoCWgPQwhj0t9L4cRQQJSGlFKUaBVL/WgWR0CVEnu6ErXldX2UKGgGaAloD0MIwqbOo6KicECUhpRSlGgVTZoCaBZHQJUT2Vt4zJp1fZQoaAZoCWgPQwhws3ixMFVwQJSGlFKUaBVNWgJoFkdAlRZ+0kWyknV9lChoBmgJaA9DCCVdM/kmknBAlIaUUpRoFU3rAWgWR0CVFq2mHgxbdX2UKGgGaAloD0MI83LYfcdiTUCUhpRSlGgVS91oFkdAlRcFs54nnnV9lChoBmgJaA9DCPgyUYTU919AlIaUUpRoFU3oA2gWR0CVF2yOq//OdX2UKGgGaAloD0MIoDL+fcabQkCUhpRSlGgVS9poFkdAlRyyHh0heXV9lChoBmgJaA9DCPc7FAV6lWFAlIaUUpRoFU3oA2gWR0CVHXCfpUxVdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.97, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2-n.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2cc6b92d38fcce2b14596d1cb980ae3ec76410abe23a6cc5168e63c3799be47a
3
+ size 147210
ppo-LunarLander-v2-n/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2-n/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f77c61efca0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f77c61efd30>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f77c61efdc0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f77c61efe50>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f77c61efee0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f77c61eff70>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f77c61f3040>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f77c61f30d0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f77c61f3160>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f77c61f31f0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f77c61f3280>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f77c61ee510>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1671664945416011603,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALPRnj32JDm6miSSOQdOF7ZnHbO6M7esuAAAgD8AAIA/ACvrvf+DaD/Tur294gDdvkdwqb3cdUO9AAAAAAAAAAAzdbC8oe0PPvoinj37Iy++hq+ZPSR3vDwAAAAAAAAAACYtsz32LG26W7hjOmBJD7bdJkY716WQuQAAgD8AAIA/sx4yPlvLiLwt9j87xeqFuShm9b31zH26AACAPwAAgD+A0ue9KZBZuuiyazu7yWW2GD87u6OlZLUAAIA/AACAP+b0AT1cRw2632gtuCshxDKyiuy74U5KNwAAgD8AAIA/zU7bPRf7Kj67QJK9KpNKvictaDzgJnK8AAAAAAAAAACmaM69kUJbPscdIj2JLUC+ZKt9vN7Znz0AAAAAAAAAAKaXjr2PUni6PPK5OzSInTeR3TI7+shQNgAAgD8AAIA/WjSHPSmEaLrcJ563RBuzsQYfOLuiabg2AACAPwAAgD8Aghy9ZtssP1qGdj3XQpq+/npNvLYqGz0AAAAAAAAAABrksz3Pin09E+XMvTOLK75a2eG8XUxZvQAAAAAAAAAAQBXSvXuSg7r4CJm6RmyUtfWwQriFebI5AACAPwAAgD+aciQ9FMywuvI7nDdeLpgyDYezOefGsrYAAIA/AACAP/OwjD3hFIi6Ejv2NLndfDA0VKS6+LtatAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYD5ZMVzdMkCUhpRSlIwBbJRL6IwBdJRHQJOTcVk+X7d1fZQoaAZoCWgPQwhYHM786kdgQJSGlFKUaBVN6ANoFkdAk66qf4AS4HV9lChoBmgJaA9DCOmayTdb62RAlIaUUpRoFU3oA2gWR0CTr05Jsfq5dX2UKGgGaAloD0MI3xltVRKtU0CUhpRSlGgVTegDaBZHQJO0289Oh011fZQoaAZoCWgPQwjiH7b0aJtdQJSGlFKUaBVN6ANoFkdAk7UAWFev6nV9lChoBmgJaA9DCG082GI3f2NAlIaUUpRoFU3oA2gWR0CTtxTdtVJddX2UKGgGaAloD0MIMPFHUWcFX0CUhpRSlGgVTegDaBZHQJO8ovUSZjR1fZQoaAZoCWgPQwhTeTvCaXhkQJSGlFKUaBVN6ANoFkdAk8Gfv0AcUHV9lChoBmgJaA9DCG8u/rYnLD1AlIaUUpRoFU0UAWgWR0CTyQ8pCrtFdX2UKGgGaAloD0MIp5NsdTnoZkCUhpRSlGgVTegDaBZHQJPJY384xUN1fZQoaAZoCWgPQwiVDABV3BpjQJSGlFKUaBVN6ANoFkdAk8ntTYNAknV9lChoBmgJaA9DCG0ANiBCrGZAlIaUUpRoFU3oA2gWR0CTz5B5X2dvdX2UKGgGaAloD0MIE5uPa0PvY0CUhpRSlGgVTegDaBZHQJPZ+u6mO2l1fZQoaAZoCWgPQwjFckuroYdiQJSGlFKUaBVN6ANoFkdAk9ocWGh24nV9lChoBmgJaA9DCDQsRl1rhl9AlIaUUpRoFU3oA2gWR0CT3ckDIRywdX2UKGgGaAloD0MIijve5LdsYUCUhpRSlGgVTegDaBZHQJPfL/Mnqml1fZQoaAZoCWgPQwgRxk/j3kxkQJSGlFKUaBVN6ANoFkdAk+YCGnGbTnV9lChoBmgJaA9DCLWNP1HZ7GNAlIaUUpRoFU3oA2gWR0CT5votL+PzdX2UKGgGaAloD0MIqTKMu8GBbECUhpRSlGgVTUMBaBZHQJPtbcclw991fZQoaAZoCWgPQwgLfbCMDQJjQJSGlFKUaBVN6ANoFkdAk+5u/UONHnV9lChoBmgJaA9DCBkCgGNPJWdAlIaUUpRoFU3oA2gWR0CT7v+98JD3dX2UKGgGaAloD0MIH/RsVj2HcECUhpRSlGgVTSoCaBZHQJQEliSaEzx1fZQoaAZoCWgPQwjBb0OM1/1jQJSGlFKUaBVN6ANoFkdAlAZ0srd30XV9lChoBmgJaA9DCPBN02cHU2dAlIaUUpRoFU3oA2gWR0CUBpGeMAFQdX2UKGgGaAloD0MIZf7RN2mgQUCUhpRSlGgVS+VoFkdAlAc6A4GUwHV9lChoBmgJaA9DCIXq5uJvdW9AlIaUUpRoFU0FAmgWR0CUCvNRm9QGdX2UKGgGaAloD0MI4QfnU8fRYECUhpRSlGgVTegDaBZHQJQMhDYywfR1fZQoaAZoCWgPQwgiGAeXjhFdQJSGlFKUaBVN6ANoFkdAlBCaSs8xK3V9lChoBmgJaA9DCGb0o+GUh2JAlIaUUpRoFU3oA2gWR0CUF7CzTnaGdX2UKGgGaAloD0MIXqCkwIJFZECUhpRSlGgVTegDaBZHQJQYB+iJwbV1fZQoaAZoCWgPQwiiDivc8hxcQJSGlFKUaBVN6ANoFkdAlBiJqdpZfXV9lChoBmgJaA9DCCuk/KTa1zZAlIaUUpRoFU0IAWgWR0CUKnYLb5/LdX2UKGgGaAloD0MIu3uA7svncECUhpRSlGgVTc4CaBZHQJQtqP8yeqd1fZQoaAZoCWgPQwgb2CrBYs9hQJSGlFKUaBVN6ANoFkdAlC3/0h/y5XV9lChoBmgJaA9DCB1znrEv5GJAlIaUUpRoFU3oA2gWR0CUL2d5prULdX2UKGgGaAloD0MIvvp46DueY0CUhpRSlGgVTegDaBZHQJQ2KGwiaAp1fZQoaAZoCWgPQwigjVw3ZUJwQJSGlFKUaBVNgwNoFkdAlDkCADq4Y3V9lChoBmgJaA9DCAxcHmvGGWNAlIaUUpRoFU3oA2gWR0CUPViPQv6CdX2UKGgGaAloD0MIVP61vLLRcUCUhpRSlGgVTUUDaBZHQJRUUgW8AaN1fZQoaAZoCWgPQwgclgZ+1HNkQJSGlFKUaBVN6ANoFkdAlFTAnx8UmHV9lChoBmgJaA9DCEYnS633UWNAlIaUUpRoFU3oA2gWR0CUVrchC+lCdX2UKGgGaAloD0MIdTklIKYNZ0CUhpRSlGgVTegDaBZHQJRW1F8XvYx1fZQoaAZoCWgPQwhGJuDXSPpfQJSGlFKUaBVN6ANoFkdAlFd50r9VFXV9lChoBmgJaA9DCIo5CDpaqW9AlIaUUpRoFU3nA2gWR0CUWw+jM3ZPdX2UKGgGaAloD0MIsDkHz4TGK8CUhpRSlGgVS/loFkdAlF3WuDBdlnV9lChoBmgJaA9DCOylKQIcXWJAlIaUUpRoFU3oA2gWR0CUYJ/Tb349dX2UKGgGaAloD0MIHXV0XI1LYUCUhpRSlGgVTegDaBZHQJRnNdMTN+t1fZQoaAZoCWgPQwhS7dPxmIFmQJSGlFKUaBVN6ANoFkdAlGeAz544ZXV9lChoBmgJaA9DCEw1s5YCfG5AlIaUUpRoFU2bAWgWR0CUcwXOnl4kdX2UKGgGaAloD0MIt2EUBI+vYUCUhpRSlGgVTegDaBZHQJR4oJokAxV1fZQoaAZoCWgPQwha1v1jIXRlQJSGlFKUaBVN6ANoFkdAlHsShJyyU3V9lChoBmgJaA9DCCoAxjNob2JAlIaUUpRoFU3oA2gWR0CUe16TGHYZdX2UKGgGaAloD0MIWafK90zScECUhpRSlGgVTXoCaBZHQJR7jPX05EN1fZQoaAZoCWgPQwibkUHuoi1jQJSGlFKUaBVN6ANoFkdAlHyWlZX+2nV9lChoBmgJaA9DCDI9YYkHG2VAlIaUUpRoFU3oA2gWR0CUgrHsC1Z1dX2UKGgGaAloD0MIfjuJCP/OX0CUhpRSlGgVTegDaBZHQJSFYHgP3BZ1fZQoaAZoCWgPQwj7ljldlr5nQJSGlFKUaBVN6ANoFkdAlI2rlRxcV3V9lChoBmgJaA9DCPD49q7Bn2VAlIaUUpRoFU3oA2gWR0CUjh30f5k9dX2UKGgGaAloD0MI5xiQvd5BZUCUhpRSlGgVTegDaBZHQJSjD/uLJjl1fZQoaAZoCWgPQwg3xeOiWpBlQJSGlFKUaBVN6ANoFkdAlKPsUVSGanV9lChoBmgJaA9DCLFppRBIQ2JAlIaUUpRoFU3oA2gWR0CUq2cVxjridX2UKGgGaAloD0MIym5m9COOZUCUhpRSlGgVTegDaBZHQJSugR9PUKB1fZQoaAZoCWgPQwjLDvEPW2dkQJSGlFKUaBVN6ANoFkdAlLWVDfFaS3V9lChoBmgJaA9DCBkg0QQKaWJAlIaUUpRoFU3oA2gWR0CUte6u4gA7dX2UKGgGaAloD0MIKQZINIEzYkCUhpRSlGgVTegDaBZHQJTBfkcS5Ah1fZQoaAZoCWgPQwh+/nvw2o1eQJSGlFKUaBVN6ANoFkdAlMb7IT4+KXV9lChoBmgJaA9DCGYxsfn4LXJAlIaUUpRoFU3gAWgWR0CUyPzAN5MUdX2UKGgGaAloD0MIHy+kw0NEZkCUhpRSlGgVTegDaBZHQJTJSgvlEJB1fZQoaAZoCWgPQwif46PFmXJmQJSGlFKUaBVN6ANoFkdAlMmVxCIDYHV9lChoBmgJaA9DCAJlU65wFmBAlIaUUpRoFU3oA2gWR0CUycH8TBZZdX2UKGgGaAloD0MIpIriVdazXUCUhpRSlGgVTegDaBZHQJTKtNahYeV1fZQoaAZoCWgPQwj9EYYBy15wQJSGlFKUaBVN0gJoFkdAlM2kbLlmvnV9lChoBmgJaA9DCB9q2zCKr2ZAlIaUUpRoFU3oA2gWR0CUz+MbFS88dX2UKGgGaAloD0MIDHcujHS1bECUhpRSlGgVTVMDaBZHQJTRsdfb9Ih1fZQoaAZoCWgPQwgmqOFb2FBnQJSGlFKUaBVN6ANoFkdAlNItDc/MXHV9lChoBmgJaA9DCAINNnUeTXBAlIaUUpRoFU2lA2gWR0CU2Q0+kgwHdX2UKGgGaAloD0MIwXPv4RL3Y0CUhpRSlGgVTegDaBZHQJTaBntfG+91fZQoaAZoCWgPQwhnDkktlPRxQJSGlFKUaBVNDQFoFkdAlPEHdsSCe3V9lChoBmgJaA9DCMnLmljgP3BAlIaUUpRoFU2lAWgWR0CU8zyvcJt0dX2UKGgGaAloD0MI9ifxuZMRZUCUhpRSlGgVTegDaBZHQJT52oXKr7x1fZQoaAZoCWgPQwiKr3YU59BvQJSGlFKUaBVNQQJoFkdAlPrCwB5ooXV9lChoBmgJaA9DCLw+c9anzW5AlIaUUpRoFU0nA2gWR0CU/4/HYHxCdX2UKGgGaAloD0MIgSVXsXiAYkCUhpRSlGgVTegDaBZHQJT/xz90ihZ1fZQoaAZoCWgPQwiPHVTiOpRlQJSGlFKUaBVN6ANoFkdAlQAG0/nnuHV9lChoBmgJaA9DCNGWcymuOHBAlIaUUpRoFU0EA2gWR0CVA4og3cYZdX2UKGgGaAloD0MITpzc7xAucUCUhpRSlGgVTe4BaBZHQJUGh9kSVW11fZQoaAZoCWgPQwgbvK/KRRdwQJSGlFKUaBVN5AJoFkdAlQaqzzErG3V9lChoBmgJaA9DCD0QWaRJPnBAlIaUUpRoFU3pAWgWR0CVCbc0+C9RdX2UKGgGaAloD0MI5PT1fE0PY0CUhpRSlGgVTegDaBZHQJUMjb+Lm6p1fZQoaAZoCWgPQwi1/SsrTWdsQJSGlFKUaBVNDANoFkdAlQyb5RCQcXV9lChoBmgJaA9DCNuK/WW313BAlIaUUpRoFU3LA2gWR0CVDQ2nsLOSdX2UKGgGaAloD0MIlUiil1GGYUCUhpRSlGgVTegDaBZHQJUOkAWBSUF1fZQoaAZoCWgPQwhj0t9L4cRQQJSGlFKUaBVL/WgWR0CVEnu6ErXldX2UKGgGaAloD0MIwqbOo6KicECUhpRSlGgVTZoCaBZHQJUT2Vt4zJp1fZQoaAZoCWgPQwhws3ixMFVwQJSGlFKUaBVNWgJoFkdAlRZ+0kWyknV9lChoBmgJaA9DCCVdM/kmknBAlIaUUpRoFU3rAWgWR0CVFq2mHgxbdX2UKGgGaAloD0MI83LYfcdiTUCUhpRSlGgVS91oFkdAlRcFs54nnnV9lChoBmgJaA9DCPgyUYTU919AlIaUUpRoFU3oA2gWR0CVF2yOq//OdX2UKGgGaAloD0MIoDL+fcabQkCUhpRSlGgVS9poFkdAlRyyHh0heXV9lChoBmgJaA9DCPc7FAV6lWFAlIaUUpRoFU3oA2gWR0CVHXCfpUxVdWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.97,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2-n/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b9fdc4de163fc7ec2951e9fa8b9461e104ced28e61d238bcfc5ffd786f2b44c2
3
+ size 87929
ppo-LunarLander-v2-n/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6486f700da9bc7d70b47ca6c6989cbc5e7078b5829a857e6e2bae0874f9b7ce8
3
+ size 43201
ppo-LunarLander-v2-n/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2-n/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (194 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 258.5069998587527, "std_reward": 21.658570702132714, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-22T00:13:23.617783"}