File size: 19,246 Bytes
455acc7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 |
# (c) City96 || Apache-2.0 (apache.org/licenses/LICENSE-2.0)
import torch
import gguf
import copy
import logging
import comfy.sd
import comfy.utils
import comfy.model_management
import comfy.model_patcher
import folder_paths
from .ops import GGMLTensor, GGMLOps, move_patch_to_device
from .dequant import is_quantized, is_torch_compatible
# Add a custom keys for files ending in .gguf
if "unet_gguf" not in folder_paths.folder_names_and_paths:
orig = folder_paths.folder_names_and_paths.get("diffusion_models", folder_paths.folder_names_and_paths.get("unet", [[], set()]))
folder_paths.folder_names_and_paths["unet_gguf"] = (orig[0], {".gguf"})
if "clip_gguf" not in folder_paths.folder_names_and_paths:
orig = folder_paths.folder_names_and_paths.get("clip", [[], set()])
folder_paths.folder_names_and_paths["clip_gguf"] = (orig[0], {".gguf"})
def gguf_sd_loader_get_orig_shape(reader, tensor_name):
field_key = f"comfy.gguf.orig_shape.{tensor_name}"
field = reader.get_field(field_key)
if field is None:
return None
# Has original shape metadata, so we try to decode it.
if len(field.types) != 2 or field.types[0] != gguf.GGUFValueType.ARRAY or field.types[1] != gguf.GGUFValueType.INT32:
raise TypeError(f"Bad original shape metadata for {field_key}: Expected ARRAY of INT32, got {field.types}")
return torch.Size(tuple(int(field.parts[part_idx][0]) for part_idx in field.data))
def gguf_sd_loader(path, handle_prefix="model.diffusion_model."):
"""
Read state dict as fake tensors
"""
reader = gguf.GGUFReader(path)
# filter and strip prefix
has_prefix = False
if handle_prefix is not None:
prefix_len = len(handle_prefix)
tensor_names = set(tensor.name for tensor in reader.tensors)
has_prefix = any(s.startswith(handle_prefix) for s in tensor_names)
tensors = []
for tensor in reader.tensors:
sd_key = tensor_name = tensor.name
if has_prefix:
if not tensor_name.startswith(handle_prefix):
continue
sd_key = tensor_name[prefix_len:]
tensors.append((sd_key, tensor))
# detect and verify architecture
compat = None
arch_str = None
arch_field = reader.get_field("general.architecture")
if arch_field is not None:
if len(arch_field.types) != 1 or arch_field.types[0] != gguf.GGUFValueType.STRING:
raise TypeError(f"Bad type for GGUF general.architecture key: expected string, got {arch_field.types!r}")
arch_str = str(arch_field.parts[arch_field.data[-1]], encoding="utf-8")
if arch_str not in {"flux", "sd1", "sdxl", "t5", "t5encoder", "sd3"}:
raise ValueError(f"Unexpected architecture type in GGUF file, expected one of flux, sd1, sdxl, t5encoder, sd3 but got {arch_str!r}")
else: # stable-diffusion.cpp
# import here to avoid changes to convert.py breaking regular models
from .tools.convert import detect_arch
arch_str = detect_arch(set(val[0] for val in tensors)).arch
compat = "sd.cpp"
# main loading loop
state_dict = {}
qtype_dict = {}
for sd_key, tensor in tensors:
tensor_name = tensor.name
tensor_type_str = str(tensor.tensor_type)
torch_tensor = torch.from_numpy(tensor.data) # mmap
shape = gguf_sd_loader_get_orig_shape(reader, tensor_name)
if shape is None:
shape = torch.Size(tuple(int(v) for v in reversed(tensor.shape)))
# Workaround for stable-diffusion.cpp SDXL detection.
if compat == "sd.cpp" and arch_str == "sdxl":
if any([tensor_name.endswith(x) for x in (".proj_in.weight", ".proj_out.weight")]):
while len(shape) > 2 and shape[-1] == 1:
shape = shape[:-1]
# add to state dict
if tensor.tensor_type in {gguf.GGMLQuantizationType.F32, gguf.GGMLQuantizationType.F16}:
torch_tensor = torch_tensor.view(*shape)
state_dict[sd_key] = GGMLTensor(torch_tensor, tensor_type=tensor.tensor_type, tensor_shape=shape)
qtype_dict[tensor_type_str] = qtype_dict.get(tensor_type_str, 0) + 1
# sanity check debug print
print("\nggml_sd_loader:")
for k,v in qtype_dict.items():
print(f" {k:30}{v:3}")
return state_dict
# for remapping llama.cpp -> original key names
clip_sd_map = {
"enc.": "encoder.",
".blk.": ".block.",
"token_embd": "shared",
"output_norm": "final_layer_norm",
"attn_q": "layer.0.SelfAttention.q",
"attn_k": "layer.0.SelfAttention.k",
"attn_v": "layer.0.SelfAttention.v",
"attn_o": "layer.0.SelfAttention.o",
"attn_norm": "layer.0.layer_norm",
"attn_rel_b": "layer.0.SelfAttention.relative_attention_bias",
"ffn_up": "layer.1.DenseReluDense.wi_1",
"ffn_down": "layer.1.DenseReluDense.wo",
"ffn_gate": "layer.1.DenseReluDense.wi_0",
"ffn_norm": "layer.1.layer_norm",
}
def gguf_clip_loader(path):
raw_sd = gguf_sd_loader(path)
assert "enc.blk.23.ffn_up.weight" in raw_sd, "Invalid Text Encoder!"
sd = {}
for k,v in raw_sd.items():
for s,d in clip_sd_map.items():
k = k.replace(s,d)
sd[k] = v
return sd
# TODO: Temporary fix for now
import collections
class GGUFModelPatcher(comfy.model_patcher.ModelPatcher):
patch_on_device = False
def patch_weight_to_device(self, key, device_to=None, inplace_update=False):
if key not in self.patches:
return
weight = comfy.utils.get_attr(self.model, key)
try:
from comfy.lora import calculate_weight
except Exception:
calculate_weight = self.calculate_weight
patches = self.patches[key]
if is_quantized(weight):
out_weight = weight.to(device_to)
patches = move_patch_to_device(patches, self.load_device if self.patch_on_device else self.offload_device)
# TODO: do we ever have legitimate duplicate patches? (i.e. patch on top of patched weight)
out_weight.patches = [(calculate_weight, patches, key)]
else:
inplace_update = self.weight_inplace_update or inplace_update
if key not in self.backup:
self.backup[key] = collections.namedtuple('Dimension', ['weight', 'inplace_update'])(
weight.to(device=self.offload_device, copy=inplace_update), inplace_update
)
if device_to is not None:
temp_weight = comfy.model_management.cast_to_device(weight, device_to, torch.float32, copy=True)
else:
temp_weight = weight.to(torch.float32, copy=True)
out_weight = calculate_weight(patches, temp_weight, key)
out_weight = comfy.float.stochastic_rounding(out_weight, weight.dtype)
if inplace_update:
comfy.utils.copy_to_param(self.model, key, out_weight)
else:
comfy.utils.set_attr_param(self.model, key, out_weight)
def unpatch_model(self, device_to=None, unpatch_weights=True):
if unpatch_weights:
for p in self.model.parameters():
if is_torch_compatible(p):
continue
patches = getattr(p, "patches", [])
if len(patches) > 0:
p.patches = []
# TODO: Find another way to not unload after patches
return super().unpatch_model(device_to=device_to, unpatch_weights=unpatch_weights)
mmap_released = False
def load(self, *args, force_patch_weights=False, **kwargs):
# always call `patch_weight_to_device` even for lowvram
super().load(*args, force_patch_weights=True, **kwargs)
# make sure nothing stays linked to mmap after first load
if not self.mmap_released:
linked = []
if kwargs.get("lowvram_model_memory", 0) > 0:
for n, m in self.model.named_modules():
if hasattr(m, "weight"):
device = getattr(m.weight, "device", None)
if device == self.offload_device:
linked.append((n, m))
continue
if hasattr(m, "bias"):
device = getattr(m.bias, "device", None)
if device == self.offload_device:
linked.append((n, m))
continue
if linked:
print(f"Attempting to release mmap ({len(linked)})")
for n, m in linked:
# TODO: possible to OOM, find better way to detach
m.to(self.load_device).to(self.offload_device)
self.mmap_released = True
def clone(self, *args, **kwargs):
n = GGUFModelPatcher(self.model, self.load_device, self.offload_device, self.size, weight_inplace_update=self.weight_inplace_update)
n.patches = {}
for k in self.patches:
n.patches[k] = self.patches[k][:]
n.patches_uuid = self.patches_uuid
n.object_patches = self.object_patches.copy()
n.model_options = copy.deepcopy(self.model_options)
n.backup = self.backup
n.object_patches_backup = self.object_patches_backup
n.patch_on_device = getattr(self, "patch_on_device", False)
return n
class UnetLoaderGGUF:
@classmethod
def INPUT_TYPES(s):
unet_names = [x for x in folder_paths.get_filename_list("unet_gguf")]
return {
"required": {
"unet_name": (unet_names,),
}
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "load_unet"
CATEGORY = "bootleg"
TITLE = "Unet Loader (GGUF)"
def load_unet(self, unet_name, dequant_dtype=None, patch_dtype=None, patch_on_device=None):
ops = GGMLOps()
if dequant_dtype in ("default", None):
ops.Linear.dequant_dtype = None
elif dequant_dtype in ["target"]:
ops.Linear.dequant_dtype = dequant_dtype
else:
ops.Linear.dequant_dtype = getattr(torch, dequant_dtype)
if patch_dtype in ("default", None):
ops.Linear.patch_dtype = None
elif patch_dtype in ["target"]:
ops.Linear.patch_dtype = patch_dtype
else:
ops.Linear.patch_dtype = getattr(torch, patch_dtype)
# init model
unet_path = folder_paths.get_full_path("unet", unet_name)
sd = gguf_sd_loader(unet_path)
model = comfy.sd.load_diffusion_model_state_dict(
sd, model_options={"custom_operations": ops}
)
if model is None:
logging.error("ERROR UNSUPPORTED UNET {}".format(unet_path))
raise RuntimeError("ERROR: Could not detect model type of: {}".format(unet_path))
model = GGUFModelPatcher.clone(model)
model.patch_on_device = patch_on_device
return (model,)
class UnetLoaderGGUFAdvanced(UnetLoaderGGUF):
@classmethod
def INPUT_TYPES(s):
unet_names = [x for x in folder_paths.get_filename_list("unet_gguf")]
return {
"required": {
"unet_name": (unet_names,),
"dequant_dtype": (["default", "target", "float32", "float16", "bfloat16"], {"default": "default"}),
"patch_dtype": (["default", "target", "float32", "float16", "bfloat16"], {"default": "default"}),
"patch_on_device": ("BOOLEAN", {"default": False}),
}
}
TITLE = "Unet Loader (GGUF/Advanced)"
clip_name_dict = {
"stable_diffusion": comfy.sd.CLIPType.STABLE_DIFFUSION,
"stable_cascade": comfy.sd.CLIPType.STABLE_CASCADE,
"stable_audio": comfy.sd.CLIPType.STABLE_AUDIO,
"sdxl": comfy.sd.CLIPType.STABLE_DIFFUSION,
"sd3": comfy.sd.CLIPType.SD3,
"flux": comfy.sd.CLIPType.FLUX,
}
class CLIPLoaderGGUF:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"clip_name": (s.get_filename_list(),),
"type": (["stable_diffusion", "stable_cascade", "sd3", "stable_audio"],),
}
}
RETURN_TYPES = ("CLIP",)
FUNCTION = "load_clip"
CATEGORY = "bootleg"
TITLE = "CLIPLoader (GGUF)"
@classmethod
def get_filename_list(s):
files = []
files += folder_paths.get_filename_list("clip")
files += folder_paths.get_filename_list("clip_gguf")
return sorted(files)
def load_data(self, ckpt_paths):
clip_data = []
for p in ckpt_paths:
if p.endswith(".gguf"):
clip_data.append(gguf_clip_loader(p))
else:
sd = comfy.utils.load_torch_file(p, safe_load=True)
clip_data.append(
{k:GGMLTensor(v, tensor_type=gguf.GGMLQuantizationType.F16, tensor_shape=v.shape) for k,v in sd.items()}
)
return clip_data
def load_patcher(self, clip_paths, clip_type, clip_data):
clip = comfy.sd.load_text_encoder_state_dicts(
clip_type = clip_type,
state_dicts = clip_data,
model_options = {
"custom_operations": GGMLOps,
"initial_device": comfy.model_management.text_encoder_offload_device()
},
embedding_directory = folder_paths.get_folder_paths("embeddings"),
)
clip.patcher = GGUFModelPatcher.clone(clip.patcher)
# for some reason this is just missing in some SAI checkpoints
if getattr(clip.cond_stage_model, "clip_l", None) is not None:
if getattr(clip.cond_stage_model.clip_l.transformer.text_projection.weight, "tensor_shape", None) is None:
clip.cond_stage_model.clip_l.transformer.text_projection = comfy.ops.manual_cast.Linear(768, 768)
if getattr(clip.cond_stage_model, "clip_g", None) is not None:
if getattr(clip.cond_stage_model.clip_g.transformer.text_projection.weight, "tensor_shape", None) is None:
clip.cond_stage_model.clip_g.transformer.text_projection = comfy.ops.manual_cast.Linear(1280, 1280)
return clip
def load_clip(self, clip_name, type="stable_diffusion"):
clip_path = folder_paths.get_full_path("clip", clip_name)
clip_type = clip_name_dict.get(type, comfy.sd.CLIPType.STABLE_DIFFUSION)
return (self.load_patcher([clip_path], clip_type, self.load_data([clip_path])),)
class DualCLIPLoaderGGUF(CLIPLoaderGGUF):
@classmethod
def INPUT_TYPES(s):
file_options = (s.get_filename_list(), )
return {
"required": {
"clip_name1": file_options,
"clip_name2": file_options,
"type": (("sdxl", "sd3", "flux"), ),
}
}
TITLE = "DualCLIPLoader (GGUF)"
def load_clip(self, clip_name1, clip_name2, type):
clip_path1 = folder_paths.get_full_path("clip", clip_name1)
clip_path2 = folder_paths.get_full_path("clip", clip_name2)
clip_paths = (clip_path1, clip_path2)
clip_type = clip_name_dict.get(type, comfy.sd.CLIPType.STABLE_DIFFUSION)
return (self.load_patcher(clip_paths, clip_type, self.load_data(clip_paths)),)
class TripleCLIPLoaderGGUF(CLIPLoaderGGUF):
@classmethod
def INPUT_TYPES(s):
file_options = (s.get_filename_list(), )
return {
"required": {
"clip_name1": file_options,
"clip_name2": file_options,
"clip_name3": file_options,
}
}
TITLE = "TripleCLIPLoader (GGUF)"
def load_clip(self, clip_name1, clip_name2, clip_name3, type="sd3"):
clip_path1 = folder_paths.get_full_path("clip", clip_name1)
clip_path2 = folder_paths.get_full_path("clip", clip_name2)
clip_path3 = folder_paths.get_full_path("clip", clip_name3)
clip_paths = (clip_path1, clip_path2, clip_path3)
clip_type = clip_name_dict.get(type, comfy.sd.CLIPType.STABLE_DIFFUSION)
return (self.load_patcher(clip_paths, clip_type, self.load_data(clip_paths)),)
class UnetLoaderSD3GGUF(UnetLoaderGGUF):
@classmethod
def INPUT_TYPES(s):
unet_names = [x for x in folder_paths.get_filename_list("unet_gguf")]
return {
"required": {
"unet_name": (unet_names,),
}
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "load_unet"
CATEGORY = "bootleg"
TITLE = "Unet Loader SD3 (GGUF)"
def load_unet(self, unet_name, dequant_dtype=None, patch_dtype=None, patch_on_device=None):
ops = GGMLOps()
if dequant_dtype in ("default", None):
ops.Linear.dequant_dtype = None
elif dequant_dtype in ["target"]:
ops.Linear.dequant_dtype = dequant_dtype
else:
ops.Linear.dequant_dtype = getattr(torch, dequant_dtype)
if patch_dtype in ("default", None):
ops.Linear.patch_dtype = None
elif patch_dtype in ["target"]:
ops.Linear.patch_dtype = patch_dtype
else:
ops.Linear.patch_dtype = getattr(torch, patch_dtype)
# init model
unet_path = folder_paths.get_full_path("unet", unet_name)
sd = gguf_sd_loader(unet_path)
model = comfy.sd.load_diffusion_model_state_dict(
sd, model_options={"custom_operations": ops, "model_type": "sd3"}
)
if model is None:
logging.error("ERROR UNSUPPORTED UNET {}".format(unet_path))
raise RuntimeError("ERROR: Could not detect model type of: {}".format(unet_path))
model = GGUFModelPatcher.clone(model)
model.patch_on_device = patch_on_device
return (model,)
class UnetLoaderSD3GGUFAdvanced(UnetLoaderSD3GGUF):
@classmethod
def INPUT_TYPES(s):
unet_names = [x for x in folder_paths.get_filename_list("unet_gguf")]
return {
"required": {
"unet_name": (unet_names,),
"dequant_dtype": (["default", "target", "float32", "float16", "bfloat16"], {"default": "default"}),
"patch_dtype": (["default", "target", "float32", "float16", "bfloat16"], {"default": "default"}),
"patch_on_device": ("BOOLEAN", {"default": False}),
}
}
TITLE = "Unet Loader SD3 (GGUF/Advanced)"
NODE_CLASS_MAPPINGS = {
"UnetLoaderGGUF": UnetLoaderGGUF,
"CLIPLoaderGGUF": CLIPLoaderGGUF,
"DualCLIPLoaderGGUF": DualCLIPLoaderGGUF,
"TripleCLIPLoaderGGUF": TripleCLIPLoaderGGUF,
"UnetLoaderGGUFAdvanced": UnetLoaderGGUFAdvanced,
"UnetLoaderSD3GGUF": UnetLoaderSD3GGUF,
"UnetLoaderSD3GGUFAdvanced": UnetLoaderSD3GGUFAdvanced,
}
|