File size: 19,246 Bytes
455acc7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
# (c) City96 || Apache-2.0 (apache.org/licenses/LICENSE-2.0)
import torch
import gguf
import copy
import logging

import comfy.sd
import comfy.utils
import comfy.model_management
import comfy.model_patcher
import folder_paths

from .ops import GGMLTensor, GGMLOps, move_patch_to_device
from .dequant import is_quantized, is_torch_compatible

# Add a custom keys for files ending in .gguf
if "unet_gguf" not in folder_paths.folder_names_and_paths:
    orig = folder_paths.folder_names_and_paths.get("diffusion_models", folder_paths.folder_names_and_paths.get("unet", [[], set()]))
    folder_paths.folder_names_and_paths["unet_gguf"] = (orig[0], {".gguf"})

if "clip_gguf" not in folder_paths.folder_names_and_paths:
    orig = folder_paths.folder_names_and_paths.get("clip", [[], set()])
    folder_paths.folder_names_and_paths["clip_gguf"] = (orig[0], {".gguf"})

def gguf_sd_loader_get_orig_shape(reader, tensor_name):
    field_key = f"comfy.gguf.orig_shape.{tensor_name}"
    field = reader.get_field(field_key)
    if field is None:
        return None
    # Has original shape metadata, so we try to decode it.
    if len(field.types) != 2 or field.types[0] != gguf.GGUFValueType.ARRAY or field.types[1] != gguf.GGUFValueType.INT32:
        raise TypeError(f"Bad original shape metadata for {field_key}: Expected ARRAY of INT32, got {field.types}")
    return torch.Size(tuple(int(field.parts[part_idx][0]) for part_idx in field.data))

def gguf_sd_loader(path, handle_prefix="model.diffusion_model."):
    """

    Read state dict as fake tensors

    """
    reader = gguf.GGUFReader(path)

    # filter and strip prefix
    has_prefix = False
    if handle_prefix is not None:
        prefix_len = len(handle_prefix)
        tensor_names = set(tensor.name for tensor in reader.tensors)
        has_prefix = any(s.startswith(handle_prefix) for s in tensor_names)

    tensors = []
    for tensor in reader.tensors:
        sd_key = tensor_name = tensor.name
        if has_prefix:
            if not tensor_name.startswith(handle_prefix):
                continue
            sd_key = tensor_name[prefix_len:]
        tensors.append((sd_key, tensor))

    # detect and verify architecture
    compat = None
    arch_str = None
    arch_field = reader.get_field("general.architecture")
    if arch_field is not None:
        if len(arch_field.types) != 1 or arch_field.types[0] != gguf.GGUFValueType.STRING:
            raise TypeError(f"Bad type for GGUF general.architecture key: expected string, got {arch_field.types!r}")
        arch_str = str(arch_field.parts[arch_field.data[-1]], encoding="utf-8")
        if arch_str not in {"flux", "sd1", "sdxl", "t5", "t5encoder", "sd3"}:
            raise ValueError(f"Unexpected architecture type in GGUF file, expected one of flux, sd1, sdxl, t5encoder, sd3 but got {arch_str!r}")
    else: # stable-diffusion.cpp
        # import here to avoid changes to convert.py breaking regular models
        from .tools.convert import detect_arch
        arch_str = detect_arch(set(val[0] for val in tensors)).arch
        compat = "sd.cpp"

    # main loading loop
    state_dict = {}
    qtype_dict = {}
    for sd_key, tensor in tensors:
        tensor_name = tensor.name
        tensor_type_str = str(tensor.tensor_type)
        torch_tensor = torch.from_numpy(tensor.data) # mmap

        shape = gguf_sd_loader_get_orig_shape(reader, tensor_name)
        if shape is None:
            shape = torch.Size(tuple(int(v) for v in reversed(tensor.shape)))
            # Workaround for stable-diffusion.cpp SDXL detection.
            if compat == "sd.cpp" and arch_str == "sdxl":
                if any([tensor_name.endswith(x) for x in (".proj_in.weight", ".proj_out.weight")]):
                    while len(shape) > 2 and shape[-1] == 1:
                        shape = shape[:-1]

        # add to state dict
        if tensor.tensor_type in {gguf.GGMLQuantizationType.F32, gguf.GGMLQuantizationType.F16}:
            torch_tensor = torch_tensor.view(*shape)
        state_dict[sd_key] = GGMLTensor(torch_tensor, tensor_type=tensor.tensor_type, tensor_shape=shape)
        qtype_dict[tensor_type_str] = qtype_dict.get(tensor_type_str, 0) + 1

    # sanity check debug print
    print("\nggml_sd_loader:")
    for k,v in qtype_dict.items():
        print(f" {k:30}{v:3}")

    return state_dict

# for remapping llama.cpp -> original key names
clip_sd_map = {
    "enc.": "encoder.",
    ".blk.": ".block.",
    "token_embd": "shared",
    "output_norm": "final_layer_norm",
    "attn_q": "layer.0.SelfAttention.q",
    "attn_k": "layer.0.SelfAttention.k",
    "attn_v": "layer.0.SelfAttention.v",
    "attn_o": "layer.0.SelfAttention.o",
    "attn_norm": "layer.0.layer_norm",
    "attn_rel_b": "layer.0.SelfAttention.relative_attention_bias",
    "ffn_up": "layer.1.DenseReluDense.wi_1",
    "ffn_down": "layer.1.DenseReluDense.wo",
    "ffn_gate": "layer.1.DenseReluDense.wi_0",
    "ffn_norm": "layer.1.layer_norm",
}

def gguf_clip_loader(path):
    raw_sd = gguf_sd_loader(path)
    assert "enc.blk.23.ffn_up.weight" in raw_sd, "Invalid Text Encoder!"
    sd = {}
    for k,v in raw_sd.items():
        for s,d in clip_sd_map.items():
            k = k.replace(s,d)
        sd[k] = v
    return sd

# TODO: Temporary fix for now
import collections
class GGUFModelPatcher(comfy.model_patcher.ModelPatcher):
    patch_on_device = False

    def patch_weight_to_device(self, key, device_to=None, inplace_update=False):
        if key not in self.patches:
            return
        weight = comfy.utils.get_attr(self.model, key)

        try:
            from comfy.lora import calculate_weight
        except Exception:
            calculate_weight = self.calculate_weight

        patches = self.patches[key]
        if is_quantized(weight):
            out_weight = weight.to(device_to)
            patches = move_patch_to_device(patches, self.load_device if self.patch_on_device else self.offload_device)
            # TODO: do we ever have legitimate duplicate patches? (i.e. patch on top of patched weight)
            out_weight.patches = [(calculate_weight, patches, key)]
        else:
            inplace_update = self.weight_inplace_update or inplace_update
            if key not in self.backup:
                self.backup[key] = collections.namedtuple('Dimension', ['weight', 'inplace_update'])(
                    weight.to(device=self.offload_device, copy=inplace_update), inplace_update
                )

            if device_to is not None:
                temp_weight = comfy.model_management.cast_to_device(weight, device_to, torch.float32, copy=True)
            else:
                temp_weight = weight.to(torch.float32, copy=True)

            out_weight = calculate_weight(patches, temp_weight, key)
            out_weight = comfy.float.stochastic_rounding(out_weight, weight.dtype)

        if inplace_update:
            comfy.utils.copy_to_param(self.model, key, out_weight)
        else:
            comfy.utils.set_attr_param(self.model, key, out_weight)

    def unpatch_model(self, device_to=None, unpatch_weights=True):
        if unpatch_weights:
            for p in self.model.parameters():
                if is_torch_compatible(p):
                    continue
                patches = getattr(p, "patches", [])
                if len(patches) > 0:
                    p.patches = []
        # TODO: Find another way to not unload after patches
        return super().unpatch_model(device_to=device_to, unpatch_weights=unpatch_weights)

    mmap_released = False
    def load(self, *args, force_patch_weights=False, **kwargs):
        # always call `patch_weight_to_device` even for lowvram
        super().load(*args, force_patch_weights=True, **kwargs)

        # make sure nothing stays linked to mmap after first load
        if not self.mmap_released:
            linked = []
            if kwargs.get("lowvram_model_memory", 0) > 0:
                for n, m in self.model.named_modules():
                    if hasattr(m, "weight"):
                        device = getattr(m.weight, "device", None)
                        if device == self.offload_device:
                            linked.append((n, m))
                            continue
                    if hasattr(m, "bias"):
                        device = getattr(m.bias, "device", None)
                        if device == self.offload_device:
                            linked.append((n, m))
                            continue
            if linked:
                print(f"Attempting to release mmap ({len(linked)})")
                for n, m in linked:
                    # TODO: possible to OOM, find better way to detach
                    m.to(self.load_device).to(self.offload_device)
            self.mmap_released = True

    def clone(self, *args, **kwargs):
        n = GGUFModelPatcher(self.model, self.load_device, self.offload_device, self.size, weight_inplace_update=self.weight_inplace_update)
        n.patches = {}
        for k in self.patches:
            n.patches[k] = self.patches[k][:]
        n.patches_uuid = self.patches_uuid

        n.object_patches = self.object_patches.copy()
        n.model_options = copy.deepcopy(self.model_options)
        n.backup = self.backup
        n.object_patches_backup = self.object_patches_backup
        n.patch_on_device = getattr(self, "patch_on_device", False)
        return n

class UnetLoaderGGUF:
    @classmethod
    def INPUT_TYPES(s):
        unet_names = [x for x in folder_paths.get_filename_list("unet_gguf")]
        return {
            "required": {
                "unet_name": (unet_names,),
            }
        }

    RETURN_TYPES = ("MODEL",)
    FUNCTION = "load_unet"
    CATEGORY = "bootleg"
    TITLE = "Unet Loader (GGUF)"

    def load_unet(self, unet_name, dequant_dtype=None, patch_dtype=None, patch_on_device=None):
        ops = GGMLOps()

        if dequant_dtype in ("default", None):
            ops.Linear.dequant_dtype = None
        elif dequant_dtype in ["target"]:
            ops.Linear.dequant_dtype = dequant_dtype
        else:
            ops.Linear.dequant_dtype = getattr(torch, dequant_dtype)

        if patch_dtype in ("default", None):
            ops.Linear.patch_dtype = None
        elif patch_dtype in ["target"]:
            ops.Linear.patch_dtype = patch_dtype
        else:
            ops.Linear.patch_dtype = getattr(torch, patch_dtype)

        # init model
        unet_path = folder_paths.get_full_path("unet", unet_name)
        sd = gguf_sd_loader(unet_path)
        model = comfy.sd.load_diffusion_model_state_dict(
            sd, model_options={"custom_operations": ops}
        )
        if model is None:
            logging.error("ERROR UNSUPPORTED UNET {}".format(unet_path))
            raise RuntimeError("ERROR: Could not detect model type of: {}".format(unet_path))
        model = GGUFModelPatcher.clone(model)
        model.patch_on_device = patch_on_device
        return (model,)

class UnetLoaderGGUFAdvanced(UnetLoaderGGUF):
    @classmethod
    def INPUT_TYPES(s):
        unet_names = [x for x in folder_paths.get_filename_list("unet_gguf")]
        return {
            "required": {
                "unet_name": (unet_names,),
                "dequant_dtype": (["default", "target", "float32", "float16", "bfloat16"], {"default": "default"}),
                "patch_dtype": (["default", "target", "float32", "float16", "bfloat16"], {"default": "default"}),
                "patch_on_device": ("BOOLEAN", {"default": False}),
            }
        }
    TITLE = "Unet Loader (GGUF/Advanced)"

clip_name_dict = {
    "stable_diffusion": comfy.sd.CLIPType.STABLE_DIFFUSION,
    "stable_cascade": comfy.sd.CLIPType.STABLE_CASCADE,
    "stable_audio": comfy.sd.CLIPType.STABLE_AUDIO,
    "sdxl": comfy.sd.CLIPType.STABLE_DIFFUSION,
    "sd3": comfy.sd.CLIPType.SD3,
    "flux": comfy.sd.CLIPType.FLUX,
}

class CLIPLoaderGGUF:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "clip_name": (s.get_filename_list(),),
                "type": (["stable_diffusion", "stable_cascade", "sd3", "stable_audio"],),
            }
        }

    RETURN_TYPES = ("CLIP",)
    FUNCTION = "load_clip"
    CATEGORY = "bootleg"
    TITLE = "CLIPLoader (GGUF)"

    @classmethod
    def get_filename_list(s):
        files = []
        files += folder_paths.get_filename_list("clip")
        files += folder_paths.get_filename_list("clip_gguf")
        return sorted(files)

    def load_data(self, ckpt_paths):
        clip_data = []
        for p in ckpt_paths:
            if p.endswith(".gguf"):
                clip_data.append(gguf_clip_loader(p))
            else:
                sd = comfy.utils.load_torch_file(p, safe_load=True)
                clip_data.append(
                    {k:GGMLTensor(v, tensor_type=gguf.GGMLQuantizationType.F16, tensor_shape=v.shape) for k,v in sd.items()}
                )
        return clip_data

    def load_patcher(self, clip_paths, clip_type, clip_data):
        clip = comfy.sd.load_text_encoder_state_dicts(
            clip_type = clip_type,
            state_dicts = clip_data,
            model_options = {
                "custom_operations": GGMLOps,
                "initial_device": comfy.model_management.text_encoder_offload_device()
            },
            embedding_directory = folder_paths.get_folder_paths("embeddings"),
        )
        clip.patcher = GGUFModelPatcher.clone(clip.patcher)

        # for some reason this is just missing in some SAI checkpoints
        if getattr(clip.cond_stage_model, "clip_l", None) is not None:
            if getattr(clip.cond_stage_model.clip_l.transformer.text_projection.weight, "tensor_shape", None) is None:
                clip.cond_stage_model.clip_l.transformer.text_projection = comfy.ops.manual_cast.Linear(768, 768)
        if getattr(clip.cond_stage_model, "clip_g", None) is not None:
            if getattr(clip.cond_stage_model.clip_g.transformer.text_projection.weight, "tensor_shape", None) is None:
                clip.cond_stage_model.clip_g.transformer.text_projection = comfy.ops.manual_cast.Linear(1280, 1280)

        return clip

    def load_clip(self, clip_name, type="stable_diffusion"):
        clip_path = folder_paths.get_full_path("clip", clip_name)
        clip_type = clip_name_dict.get(type, comfy.sd.CLIPType.STABLE_DIFFUSION)
        return (self.load_patcher([clip_path], clip_type, self.load_data([clip_path])),)

class DualCLIPLoaderGGUF(CLIPLoaderGGUF):
    @classmethod
    def INPUT_TYPES(s):
        file_options = (s.get_filename_list(), )
        return {
            "required": {
                "clip_name1": file_options,
                "clip_name2": file_options,
                "type": (("sdxl", "sd3", "flux"), ),
            }
        }

    TITLE = "DualCLIPLoader (GGUF)"

    def load_clip(self, clip_name1, clip_name2, type):
        clip_path1 = folder_paths.get_full_path("clip", clip_name1)
        clip_path2 = folder_paths.get_full_path("clip", clip_name2)
        clip_paths = (clip_path1, clip_path2)
        clip_type = clip_name_dict.get(type, comfy.sd.CLIPType.STABLE_DIFFUSION)
        return (self.load_patcher(clip_paths, clip_type, self.load_data(clip_paths)),)

class TripleCLIPLoaderGGUF(CLIPLoaderGGUF):
    @classmethod
    def INPUT_TYPES(s):
        file_options = (s.get_filename_list(), )
        return {
            "required": {
                "clip_name1": file_options,
                "clip_name2": file_options,
                "clip_name3": file_options,
            }
        }

    TITLE = "TripleCLIPLoader (GGUF)"

    def load_clip(self, clip_name1, clip_name2, clip_name3, type="sd3"):
        clip_path1 = folder_paths.get_full_path("clip", clip_name1)
        clip_path2 = folder_paths.get_full_path("clip", clip_name2)
        clip_path3 = folder_paths.get_full_path("clip", clip_name3)
        clip_paths = (clip_path1, clip_path2, clip_path3)
        clip_type = clip_name_dict.get(type, comfy.sd.CLIPType.STABLE_DIFFUSION)
        return (self.load_patcher(clip_paths, clip_type, self.load_data(clip_paths)),)

class UnetLoaderSD3GGUF(UnetLoaderGGUF):
    @classmethod
    def INPUT_TYPES(s):
        unet_names = [x for x in folder_paths.get_filename_list("unet_gguf")]
        return {
            "required": {
                "unet_name": (unet_names,),
            }
        }

    RETURN_TYPES = ("MODEL",)
    FUNCTION = "load_unet"
    CATEGORY = "bootleg"
    TITLE = "Unet Loader SD3 (GGUF)"

    def load_unet(self, unet_name, dequant_dtype=None, patch_dtype=None, patch_on_device=None):
        ops = GGMLOps()

        if dequant_dtype in ("default", None):
            ops.Linear.dequant_dtype = None
        elif dequant_dtype in ["target"]:
            ops.Linear.dequant_dtype = dequant_dtype
        else:
            ops.Linear.dequant_dtype = getattr(torch, dequant_dtype)

        if patch_dtype in ("default", None):
            ops.Linear.patch_dtype = None
        elif patch_dtype in ["target"]:
            ops.Linear.patch_dtype = patch_dtype
        else:
            ops.Linear.patch_dtype = getattr(torch, patch_dtype)

        # init model
        unet_path = folder_paths.get_full_path("unet", unet_name)
        sd = gguf_sd_loader(unet_path)
        model = comfy.sd.load_diffusion_model_state_dict(
            sd, model_options={"custom_operations": ops, "model_type": "sd3"}
        )
        if model is None:
            logging.error("ERROR UNSUPPORTED UNET {}".format(unet_path))
            raise RuntimeError("ERROR: Could not detect model type of: {}".format(unet_path))
        model = GGUFModelPatcher.clone(model)
        model.patch_on_device = patch_on_device
        return (model,)

class UnetLoaderSD3GGUFAdvanced(UnetLoaderSD3GGUF):
    @classmethod
    def INPUT_TYPES(s):
        unet_names = [x for x in folder_paths.get_filename_list("unet_gguf")]
        return {
            "required": {
                "unet_name": (unet_names,),
                "dequant_dtype": (["default", "target", "float32", "float16", "bfloat16"], {"default": "default"}),
                "patch_dtype": (["default", "target", "float32", "float16", "bfloat16"], {"default": "default"}),
                "patch_on_device": ("BOOLEAN", {"default": False}),
            }
        }
    TITLE = "Unet Loader SD3 (GGUF/Advanced)"



NODE_CLASS_MAPPINGS = {
    "UnetLoaderGGUF": UnetLoaderGGUF,
    "CLIPLoaderGGUF": CLIPLoaderGGUF,
    "DualCLIPLoaderGGUF": DualCLIPLoaderGGUF,
    "TripleCLIPLoaderGGUF": TripleCLIPLoaderGGUF,
    "UnetLoaderGGUFAdvanced": UnetLoaderGGUFAdvanced,
    "UnetLoaderSD3GGUF": UnetLoaderSD3GGUF,
    "UnetLoaderSD3GGUFAdvanced": UnetLoaderSD3GGUFAdvanced,
}