|
|
|
import torch
|
|
import gguf
|
|
import copy
|
|
import logging
|
|
|
|
import comfy.sd
|
|
import comfy.utils
|
|
import comfy.model_management
|
|
import comfy.model_patcher
|
|
import folder_paths
|
|
|
|
from .ops import GGMLTensor, GGMLOps, move_patch_to_device
|
|
from .dequant import is_quantized, is_torch_compatible
|
|
|
|
|
|
if "unet_gguf" not in folder_paths.folder_names_and_paths:
|
|
orig = folder_paths.folder_names_and_paths.get("diffusion_models", folder_paths.folder_names_and_paths.get("unet", [[], set()]))
|
|
folder_paths.folder_names_and_paths["unet_gguf"] = (orig[0], {".gguf"})
|
|
|
|
if "clip_gguf" not in folder_paths.folder_names_and_paths:
|
|
orig = folder_paths.folder_names_and_paths.get("clip", [[], set()])
|
|
folder_paths.folder_names_and_paths["clip_gguf"] = (orig[0], {".gguf"})
|
|
|
|
def gguf_sd_loader_get_orig_shape(reader, tensor_name):
|
|
field_key = f"comfy.gguf.orig_shape.{tensor_name}"
|
|
field = reader.get_field(field_key)
|
|
if field is None:
|
|
return None
|
|
|
|
if len(field.types) != 2 or field.types[0] != gguf.GGUFValueType.ARRAY or field.types[1] != gguf.GGUFValueType.INT32:
|
|
raise TypeError(f"Bad original shape metadata for {field_key}: Expected ARRAY of INT32, got {field.types}")
|
|
return torch.Size(tuple(int(field.parts[part_idx][0]) for part_idx in field.data))
|
|
|
|
def gguf_sd_loader(path, handle_prefix="model.diffusion_model."):
|
|
"""
|
|
Read state dict as fake tensors
|
|
"""
|
|
reader = gguf.GGUFReader(path)
|
|
|
|
|
|
has_prefix = False
|
|
if handle_prefix is not None:
|
|
prefix_len = len(handle_prefix)
|
|
tensor_names = set(tensor.name for tensor in reader.tensors)
|
|
has_prefix = any(s.startswith(handle_prefix) for s in tensor_names)
|
|
|
|
tensors = []
|
|
for tensor in reader.tensors:
|
|
sd_key = tensor_name = tensor.name
|
|
if has_prefix:
|
|
if not tensor_name.startswith(handle_prefix):
|
|
continue
|
|
sd_key = tensor_name[prefix_len:]
|
|
tensors.append((sd_key, tensor))
|
|
|
|
|
|
compat = None
|
|
arch_str = None
|
|
arch_field = reader.get_field("general.architecture")
|
|
if arch_field is not None:
|
|
if len(arch_field.types) != 1 or arch_field.types[0] != gguf.GGUFValueType.STRING:
|
|
raise TypeError(f"Bad type for GGUF general.architecture key: expected string, got {arch_field.types!r}")
|
|
arch_str = str(arch_field.parts[arch_field.data[-1]], encoding="utf-8")
|
|
if arch_str not in {"flux", "sd1", "sdxl", "sd3", "t5", "t5encoder"}:
|
|
raise ValueError(f"Unexpected architecture type in GGUF file, expected one of flux, sd1, sdxl, t5encoder but got {arch_str!r}")
|
|
else:
|
|
|
|
from .tools.convert import detect_arch
|
|
arch_str = detect_arch(set(val[0] for val in tensors)).arch
|
|
compat = "sd.cpp"
|
|
|
|
|
|
state_dict = {}
|
|
qtype_dict = {}
|
|
for sd_key, tensor in tensors:
|
|
tensor_name = tensor.name
|
|
tensor_type_str = str(tensor.tensor_type)
|
|
torch_tensor = torch.from_numpy(tensor.data)
|
|
|
|
shape = gguf_sd_loader_get_orig_shape(reader, tensor_name)
|
|
if shape is None:
|
|
shape = torch.Size(tuple(int(v) for v in reversed(tensor.shape)))
|
|
|
|
if compat == "sd.cpp" and arch_str == "sdxl":
|
|
if any([tensor_name.endswith(x) for x in (".proj_in.weight", ".proj_out.weight")]):
|
|
while len(shape) > 2 and shape[-1] == 1:
|
|
shape = shape[:-1]
|
|
|
|
|
|
if tensor.tensor_type in {gguf.GGMLQuantizationType.F32, gguf.GGMLQuantizationType.F16}:
|
|
torch_tensor = torch_tensor.view(*shape)
|
|
state_dict[sd_key] = GGMLTensor(torch_tensor, tensor_type=tensor.tensor_type, tensor_shape=shape)
|
|
qtype_dict[tensor_type_str] = qtype_dict.get(tensor_type_str, 0) + 1
|
|
|
|
|
|
print("\nggml_sd_loader:")
|
|
for k,v in qtype_dict.items():
|
|
print(f" {k:30}{v:3}")
|
|
|
|
return state_dict
|
|
|
|
|
|
clip_sd_map = {
|
|
"enc.": "encoder.",
|
|
".blk.": ".block.",
|
|
"token_embd": "shared",
|
|
"output_norm": "final_layer_norm",
|
|
"attn_q": "layer.0.SelfAttention.q",
|
|
"attn_k": "layer.0.SelfAttention.k",
|
|
"attn_v": "layer.0.SelfAttention.v",
|
|
"attn_o": "layer.0.SelfAttention.o",
|
|
"attn_norm": "layer.0.layer_norm",
|
|
"attn_rel_b": "layer.0.SelfAttention.relative_attention_bias",
|
|
"ffn_up": "layer.1.DenseReluDense.wi_1",
|
|
"ffn_down": "layer.1.DenseReluDense.wo",
|
|
"ffn_gate": "layer.1.DenseReluDense.wi_0",
|
|
"ffn_norm": "layer.1.layer_norm",
|
|
}
|
|
|
|
def gguf_clip_loader(path):
|
|
raw_sd = gguf_sd_loader(path)
|
|
assert "enc.blk.23.ffn_up.weight" in raw_sd, "Invalid Text Encoder!"
|
|
sd = {}
|
|
for k,v in raw_sd.items():
|
|
for s,d in clip_sd_map.items():
|
|
k = k.replace(s,d)
|
|
sd[k] = v
|
|
return sd
|
|
|
|
|
|
import collections
|
|
class GGUFModelPatcher(comfy.model_patcher.ModelPatcher):
|
|
patch_on_device = False
|
|
|
|
def patch_weight_to_device(self, key, device_to=None, inplace_update=False):
|
|
if key not in self.patches:
|
|
return
|
|
weight = comfy.utils.get_attr(self.model, key)
|
|
|
|
try:
|
|
from comfy.lora import calculate_weight
|
|
except Exception:
|
|
calculate_weight = self.calculate_weight
|
|
|
|
patches = self.patches[key]
|
|
if is_quantized(weight):
|
|
out_weight = weight.to(device_to)
|
|
patches = move_patch_to_device(patches, self.load_device if self.patch_on_device else self.offload_device)
|
|
|
|
out_weight.patches = [(calculate_weight, patches, key)]
|
|
else:
|
|
inplace_update = self.weight_inplace_update or inplace_update
|
|
if key not in self.backup:
|
|
self.backup[key] = collections.namedtuple('Dimension', ['weight', 'inplace_update'])(
|
|
weight.to(device=self.offload_device, copy=inplace_update), inplace_update
|
|
)
|
|
|
|
if device_to is not None:
|
|
temp_weight = comfy.model_management.cast_to_device(weight, device_to, torch.float32, copy=True)
|
|
else:
|
|
temp_weight = weight.to(torch.float32, copy=True)
|
|
|
|
out_weight = calculate_weight(patches, temp_weight, key)
|
|
out_weight = comfy.float.stochastic_rounding(out_weight, weight.dtype)
|
|
|
|
if inplace_update:
|
|
comfy.utils.copy_to_param(self.model, key, out_weight)
|
|
else:
|
|
comfy.utils.set_attr_param(self.model, key, out_weight)
|
|
|
|
def unpatch_model(self, device_to=None, unpatch_weights=True):
|
|
if unpatch_weights:
|
|
for p in self.model.parameters():
|
|
if is_torch_compatible(p):
|
|
continue
|
|
patches = getattr(p, "patches", [])
|
|
if len(patches) > 0:
|
|
p.patches = []
|
|
|
|
return super().unpatch_model(device_to=device_to, unpatch_weights=unpatch_weights)
|
|
|
|
mmap_released = False
|
|
def load(self, *args, force_patch_weights=False, **kwargs):
|
|
|
|
super().load(*args, force_patch_weights=True, **kwargs)
|
|
|
|
|
|
if not self.mmap_released:
|
|
linked = []
|
|
if kwargs.get("lowvram_model_memory", 0) > 0:
|
|
for n, m in self.model.named_modules():
|
|
if hasattr(m, "weight"):
|
|
device = getattr(m.weight, "device", None)
|
|
if device == self.offload_device:
|
|
linked.append((n, m))
|
|
continue
|
|
if hasattr(m, "bias"):
|
|
device = getattr(m.bias, "device", None)
|
|
if device == self.offload_device:
|
|
linked.append((n, m))
|
|
continue
|
|
if linked:
|
|
print(f"Attempting to release mmap ({len(linked)})")
|
|
for n, m in linked:
|
|
|
|
m.to(self.load_device).to(self.offload_device)
|
|
self.mmap_released = True
|
|
|
|
def clone(self, *args, **kwargs):
|
|
n = GGUFModelPatcher(self.model, self.load_device, self.offload_device, self.size, weight_inplace_update=self.weight_inplace_update)
|
|
n.patches = {}
|
|
for k in self.patches:
|
|
n.patches[k] = self.patches[k][:]
|
|
n.patches_uuid = self.patches_uuid
|
|
|
|
n.object_patches = self.object_patches.copy()
|
|
n.model_options = copy.deepcopy(self.model_options)
|
|
n.backup = self.backup
|
|
n.object_patches_backup = self.object_patches_backup
|
|
n.patch_on_device = getattr(self, "patch_on_device", False)
|
|
return n
|
|
|
|
class UnetLoaderGGUF:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
unet_names = [x for x in folder_paths.get_filename_list("unet_gguf")]
|
|
return {
|
|
"required": {
|
|
"unet_name": (unet_names,),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("MODEL",)
|
|
FUNCTION = "load_unet"
|
|
CATEGORY = "bootleg"
|
|
TITLE = "Unet Loader (GGUF)"
|
|
|
|
def load_unet(self, unet_name, dequant_dtype=None, patch_dtype=None, patch_on_device=None):
|
|
ops = GGMLOps()
|
|
|
|
if dequant_dtype in ("default", None):
|
|
ops.Linear.dequant_dtype = None
|
|
elif dequant_dtype in ["target"]:
|
|
ops.Linear.dequant_dtype = dequant_dtype
|
|
else:
|
|
ops.Linear.dequant_dtype = getattr(torch, dequant_dtype)
|
|
|
|
if patch_dtype in ("default", None):
|
|
ops.Linear.patch_dtype = None
|
|
elif patch_dtype in ["target"]:
|
|
ops.Linear.patch_dtype = patch_dtype
|
|
else:
|
|
ops.Linear.patch_dtype = getattr(torch, patch_dtype)
|
|
|
|
|
|
unet_path = folder_paths.get_full_path("unet", unet_name)
|
|
sd = gguf_sd_loader(unet_path)
|
|
model = comfy.sd.load_diffusion_model_state_dict(
|
|
sd, model_options={"custom_operations": ops}
|
|
)
|
|
if model is None:
|
|
logging.error("ERROR UNSUPPORTED UNET {}".format(unet_path))
|
|
raise RuntimeError("ERROR: Could not detect model type of: {}".format(unet_path))
|
|
model = GGUFModelPatcher.clone(model)
|
|
model.patch_on_device = patch_on_device
|
|
return (model,)
|
|
|
|
class UnetLoaderGGUFAdvanced(UnetLoaderGGUF):
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
unet_names = [x for x in folder_paths.get_filename_list("unet_gguf")]
|
|
return {
|
|
"required": {
|
|
"unet_name": (unet_names,),
|
|
"dequant_dtype": (["default", "target", "float32", "float16", "bfloat16"], {"default": "default"}),
|
|
"patch_dtype": (["default", "target", "float32", "float16", "bfloat16"], {"default": "default"}),
|
|
"patch_on_device": ("BOOLEAN", {"default": False}),
|
|
}
|
|
}
|
|
TITLE = "Unet Loader (GGUF/Advanced)"
|
|
|
|
clip_name_dict = {
|
|
"stable_diffusion": comfy.sd.CLIPType.STABLE_DIFFUSION,
|
|
"stable_cascade": comfy.sd.CLIPType.STABLE_CASCADE,
|
|
"stable_audio": comfy.sd.CLIPType.STABLE_AUDIO,
|
|
"sdxl": comfy.sd.CLIPType.STABLE_DIFFUSION,
|
|
"sd3": comfy.sd.CLIPType.SD3,
|
|
"flux": comfy.sd.CLIPType.FLUX,
|
|
}
|
|
|
|
class CLIPLoaderGGUF:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"clip_name": (s.get_filename_list(),),
|
|
"type": (["stable_diffusion", "stable_cascade", "sd3", "stable_audio"],),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("CLIP",)
|
|
FUNCTION = "load_clip"
|
|
CATEGORY = "bootleg"
|
|
TITLE = "CLIPLoader (GGUF)"
|
|
|
|
@classmethod
|
|
def get_filename_list(s):
|
|
files = []
|
|
files += folder_paths.get_filename_list("clip")
|
|
files += folder_paths.get_filename_list("clip_gguf")
|
|
return sorted(files)
|
|
|
|
def load_data(self, ckpt_paths):
|
|
clip_data = []
|
|
for p in ckpt_paths:
|
|
if p.endswith(".gguf"):
|
|
clip_data.append(gguf_clip_loader(p))
|
|
else:
|
|
sd = comfy.utils.load_torch_file(p, safe_load=True)
|
|
clip_data.append(
|
|
{k:GGMLTensor(v, tensor_type=gguf.GGMLQuantizationType.F16, tensor_shape=v.shape) for k,v in sd.items()}
|
|
)
|
|
return clip_data
|
|
|
|
def load_patcher(self, clip_paths, clip_type, clip_data):
|
|
clip = comfy.sd.load_text_encoder_state_dicts(
|
|
clip_type = clip_type,
|
|
state_dicts = clip_data,
|
|
model_options = {
|
|
"custom_operations": GGMLOps,
|
|
"initial_device": comfy.model_management.text_encoder_offload_device()
|
|
},
|
|
embedding_directory = folder_paths.get_folder_paths("embeddings"),
|
|
)
|
|
clip.patcher = GGUFModelPatcher.clone(clip.patcher)
|
|
|
|
|
|
if getattr(clip.cond_stage_model, "clip_l", None) is not None:
|
|
if getattr(clip.cond_stage_model.clip_l.transformer.text_projection.weight, "tensor_shape", None) is None:
|
|
clip.cond_stage_model.clip_l.transformer.text_projection = comfy.ops.manual_cast.Linear(768, 768)
|
|
if getattr(clip.cond_stage_model, "clip_g", None) is not None:
|
|
if getattr(clip.cond_stage_model.clip_g.transformer.text_projection.weight, "tensor_shape", None) is None:
|
|
clip.cond_stage_model.clip_g.transformer.text_projection = comfy.ops.manual_cast.Linear(1280, 1280)
|
|
|
|
return clip
|
|
|
|
def load_clip(self, clip_name, type="stable_diffusion"):
|
|
clip_path = folder_paths.get_full_path("clip", clip_name)
|
|
clip_type = clip_name_dict.get(type, comfy.sd.CLIPType.STABLE_DIFFUSION)
|
|
return (self.load_patcher([clip_path], clip_type, self.load_data([clip_path])),)
|
|
|
|
class DualCLIPLoaderGGUF(CLIPLoaderGGUF):
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
file_options = (s.get_filename_list(), )
|
|
return {
|
|
"required": {
|
|
"clip_name1": file_options,
|
|
"clip_name2": file_options,
|
|
"type": (("sdxl", "sd3", "flux"), ),
|
|
}
|
|
}
|
|
|
|
TITLE = "DualCLIPLoader (GGUF)"
|
|
|
|
def load_clip(self, clip_name1, clip_name2, type):
|
|
clip_path1 = folder_paths.get_full_path("clip", clip_name1)
|
|
clip_path2 = folder_paths.get_full_path("clip", clip_name2)
|
|
clip_paths = (clip_path1, clip_path2)
|
|
clip_type = clip_name_dict.get(type, comfy.sd.CLIPType.STABLE_DIFFUSION)
|
|
return (self.load_patcher(clip_paths, clip_type, self.load_data(clip_paths)),)
|
|
|
|
class TripleCLIPLoaderGGUF(CLIPLoaderGGUF):
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
file_options = (s.get_filename_list(), )
|
|
return {
|
|
"required": {
|
|
"clip_name1": file_options,
|
|
"clip_name2": file_options,
|
|
"clip_name3": file_options,
|
|
}
|
|
}
|
|
|
|
TITLE = "TripleCLIPLoader (GGUF)"
|
|
|
|
def load_clip(self, clip_name1, clip_name2, clip_name3, type="sd3"):
|
|
clip_path1 = folder_paths.get_full_path("clip", clip_name1)
|
|
clip_path2 = folder_paths.get_full_path("clip", clip_name2)
|
|
clip_path3 = folder_paths.get_full_path("clip", clip_name3)
|
|
clip_paths = (clip_path1, clip_path2, clip_path3)
|
|
clip_type = clip_name_dict.get(type, comfy.sd.CLIPType.STABLE_DIFFUSION)
|
|
return (self.load_patcher(clip_paths, clip_type, self.load_data(clip_paths)),)
|
|
|
|
NODE_CLASS_MAPPINGS = {
|
|
"UnetLoaderGGUF": UnetLoaderGGUF,
|
|
"CLIPLoaderGGUF": CLIPLoaderGGUF,
|
|
"DualCLIPLoaderGGUF": DualCLIPLoaderGGUF,
|
|
"TripleCLIPLoaderGGUF": TripleCLIPLoaderGGUF,
|
|
"UnetLoaderGGUFAdvanced": UnetLoaderGGUFAdvanced,
|
|
}
|
|
|