Upload Finetune_.ipynb
Browse files- Finetune_.ipynb +234 -0
Finetune_.ipynb
ADDED
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"source": [
|
6 |
+
"#@title 🤗 AutoTrain DreamBooth\n",
|
7 |
+
"# @markdown In order to use this colab\n",
|
8 |
+
"# @markdown - upload images to a folder named `images/`\n",
|
9 |
+
"# @markdown - choose a project name if you wish\n",
|
10 |
+
"# @markdown - change model if you wish, you can also select sd2/2.1 or sd1.5\n",
|
11 |
+
"# @markdown - update prompt and remember it. choose keywords that don't usually appear in dictionaries\n",
|
12 |
+
"# @markdown - add huggingface information (token and repo_id) if you wish to push trained model to huggingface hub\n",
|
13 |
+
"# @markdown - update hyperparameters if you wish\n",
|
14 |
+
"# @markdown - click `Runtime > Run all` or run each cell individually\n",
|
15 |
+
"\n",
|
16 |
+
"import os\n",
|
17 |
+
"!pip install -U autotrain-advanced > install_logs.txt\n",
|
18 |
+
"!autotrain setup > setup_logs.txt"
|
19 |
+
],
|
20 |
+
"metadata": {
|
21 |
+
"cellView": "code",
|
22 |
+
"id": "9iClNdQayIv5"
|
23 |
+
},
|
24 |
+
"execution_count": null,
|
25 |
+
"outputs": []
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"cell_type": "markdown",
|
29 |
+
"source": [
|
30 |
+
"# New Section"
|
31 |
+
],
|
32 |
+
"metadata": {
|
33 |
+
"id": "BqqPQXPhRgU2"
|
34 |
+
}
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"cell_type": "code",
|
38 |
+
"source": [
|
39 |
+
"from google.colab import drive\n",
|
40 |
+
"drive.mount('/content/drive')"
|
41 |
+
],
|
42 |
+
"metadata": {
|
43 |
+
"colab": {
|
44 |
+
"base_uri": "https://localhost:8080/"
|
45 |
+
},
|
46 |
+
"id": "DL29zZgjRtll",
|
47 |
+
"outputId": "ced02a72-8dda-48c1-c111-a682dd5e2881"
|
48 |
+
},
|
49 |
+
"execution_count": 3,
|
50 |
+
"outputs": [
|
51 |
+
{
|
52 |
+
"output_type": "stream",
|
53 |
+
"name": "stdout",
|
54 |
+
"text": [
|
55 |
+
"Mounted at /content/drive\n"
|
56 |
+
]
|
57 |
+
}
|
58 |
+
]
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"cell_type": "code",
|
62 |
+
"execution_count": 5,
|
63 |
+
"metadata": {
|
64 |
+
"id": "A2-_lkBS1WKA",
|
65 |
+
"cellView": "code"
|
66 |
+
},
|
67 |
+
"outputs": [],
|
68 |
+
"source": [
|
69 |
+
"#@markdown ---\n",
|
70 |
+
"#@markdown #### Project Config\n",
|
71 |
+
"project_name = 'my_dreambooth_project' # @param {type:\"string\"}\n",
|
72 |
+
"model_name = 'stabilityai/stable-diffusion-xl-base-1.0' # @param [\"stabilityai/stable-diffusion-xl-base-1.0\", \"runwayml/stable-diffusion-v1-5\", \"stabilityai/stable-diffusion-2-1\", \"stabilityai/stable-diffusion-2-1-base\"]\n",
|
73 |
+
"prompt = 'photo of a nkl person' # @param {type: \"string\"}\n",
|
74 |
+
"\n",
|
75 |
+
"#@markdown ---\n",
|
76 |
+
"#@markdown #### Push to Hub?\n",
|
77 |
+
"#@markdown Use these only if you want to push your trained model to a private repo in your Hugging Face Account\n",
|
78 |
+
"#@markdown If you dont use these, the model will be saved in Google Colab and you are required to download it manually.\n",
|
79 |
+
"#@markdown Please enter your Hugging Face write token. The trained model will be saved to your Hugging Face account.\n",
|
80 |
+
"#@markdown You can find your token here: https://huggingface.co/settings/tokens\n",
|
81 |
+
"push_to_hub = True # @param [\"False\", \"True\"] {type:\"raw\"}\n",
|
82 |
+
"hf_token = \"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\" #@param {type:\"string\"}\n",
|
83 |
+
"repo_id = \"NEXAS/stable_diff_custom\" #@param {type:\"string\"}\n",
|
84 |
+
"\n",
|
85 |
+
"#@markdown ---\n",
|
86 |
+
"#@markdown #### Hyperparameters\n",
|
87 |
+
"learning_rate = 1e-4 # @param {type:\"number\"}\n",
|
88 |
+
"num_steps = 500 #@param {type:\"number\"}\n",
|
89 |
+
"batch_size = 1 # @param {type:\"slider\", min:1, max:32, step:1}\n",
|
90 |
+
"gradient_accumulation = 4 # @param {type:\"slider\", min:1, max:32, step:1}\n",
|
91 |
+
"resolution = 1024 # @param {type:\"slider\", min:128, max:1024, step:128}\n",
|
92 |
+
"use_8bit_adam = True # @param [\"False\", \"True\"] {type:\"raw\"}\n",
|
93 |
+
"use_xformers = True # @param [\"False\", \"True\"] {type:\"raw\"}\n",
|
94 |
+
"use_fp16 = True # @param [\"False\", \"True\"] {type:\"raw\"}\n",
|
95 |
+
"train_text_encoder = False # @param [\"False\", \"True\"] {type:\"raw\"}\n",
|
96 |
+
"gradient_checkpointing = True # @param [\"False\", \"True\"] {type:\"raw\"}\n",
|
97 |
+
"os.environ[\"PROJECT_NAME\"] = project_name\n",
|
98 |
+
"os.environ[\"MODEL_NAME\"] = model_name\n",
|
99 |
+
"os.environ[\"PROMPT\"] = prompt\n",
|
100 |
+
"os.environ[\"PUSH_TO_HUB\"] = str(push_to_hub)\n",
|
101 |
+
"os.environ[\"HF_TOKEN\"] = hf_token\n",
|
102 |
+
"os.environ[\"REPO_ID\"] = repo_id\n",
|
103 |
+
"os.environ[\"LEARNING_RATE\"] = str(learning_rate)\n",
|
104 |
+
"os.environ[\"NUM_STEPS\"] = str(num_steps)\n",
|
105 |
+
"os.environ[\"BATCH_SIZE\"] = str(batch_size)\n",
|
106 |
+
"os.environ[\"GRADIENT_ACCUMULATION\"] = str(gradient_accumulation)\n",
|
107 |
+
"os.environ[\"RESOLUTION\"] = str(resolution)\n",
|
108 |
+
"os.environ[\"USE_8BIT_ADAM\"] = str(use_8bit_adam)\n",
|
109 |
+
"os.environ[\"USE_XFORMERS\"] = str(use_xformers)\n",
|
110 |
+
"os.environ[\"USE_FP16\"] = str(use_fp16)\n",
|
111 |
+
"os.environ[\"TRAIN_TEXT_ENCODER\"] = str(train_text_encoder)\n",
|
112 |
+
"os.environ[\"GRADIENT_CHECKPOINTING\"] = str(gradient_checkpointing)"
|
113 |
+
]
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"cell_type": "code",
|
117 |
+
"execution_count": null,
|
118 |
+
"metadata": {
|
119 |
+
"collapsed": true,
|
120 |
+
"id": "g3cd_ED_yXXt"
|
121 |
+
},
|
122 |
+
"outputs": [],
|
123 |
+
"source": [
|
124 |
+
"!autotrain dreambooth \\\n",
|
125 |
+
"--model ${MODEL_NAME} \\\n",
|
126 |
+
"--output ${PROJECT_NAME} \\\n",
|
127 |
+
"--image-path images/ \\\n",
|
128 |
+
"--prompt \"${PROMPT}\" \\\n",
|
129 |
+
"--resolution ${RESOLUTION} \\\n",
|
130 |
+
"--batch-size ${BATCH_SIZE} \\\n",
|
131 |
+
"--num-steps ${NUM_STEPS} \\\n",
|
132 |
+
"--gradient-accumulation ${GRADIENT_ACCUMULATION} \\\n",
|
133 |
+
"--lr ${LEARNING_RATE} \\\n",
|
134 |
+
"$( [[ \"$USE_FP16\" == \"True\" ]] && echo \"--fp16\" ) \\\n",
|
135 |
+
"$( [[ \"$USE_XFORMERS\" == \"True\" ]] && echo \"--xformers\" ) \\\n",
|
136 |
+
"$( [[ \"$TRAIN_TEXT_ENCODER\" == \"True\" ]] && echo \"--train-text-encoder\" ) \\\n",
|
137 |
+
"$( [[ \"$USE_8BIT_ADAM\" == \"True\" ]] && echo \"--use-8bit-adam\" ) \\\n",
|
138 |
+
"$( [[ \"$GRADIENT_CHECKPOINTING\" == \"True\" ]] && echo \"--gradient-checkpointing\" ) \\\n",
|
139 |
+
"$( [[ \"$PUSH_TO_HUB\" == \"True\" ]] && echo \"--push-to-hub --hub-token ${HF_TOKEN} --hub-model-id ${REPO_ID}\" )"
|
140 |
+
]
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"cell_type": "code",
|
144 |
+
"source": [
|
145 |
+
"# Inference\n",
|
146 |
+
"# this is the inference code that you can use after you have trained your model\n",
|
147 |
+
"# Unhide code below and change prj_path to your repo or local path (e.g. my_dreambooth_project)\n",
|
148 |
+
"#\n",
|
149 |
+
"#\n",
|
150 |
+
"#\n",
|
151 |
+
"from diffusers import DiffusionPipeline\n",
|
152 |
+
"import torch\n",
|
153 |
+
"\n",
|
154 |
+
"prj_path = \"/content/my_dreambooth_project\"\n",
|
155 |
+
"model = \"stabilityai/stable-diffusion-xl-base-1.0\"\n",
|
156 |
+
"pipe = DiffusionPipeline.from_pretrained(\n",
|
157 |
+
" model,\n",
|
158 |
+
" torch_dtype=torch.float16,\n",
|
159 |
+
")\n",
|
160 |
+
"pipe.to(\"cuda\")\n",
|
161 |
+
"pipe.load_lora_weights(prj_path, weight_name=\"pytorch_lora_weights.safetensors\")\n",
|
162 |
+
"\n",
|
163 |
+
"prompt = \"potrait Photo of a nkl person, in anime style\"\n",
|
164 |
+
"\n",
|
165 |
+
"for seed in range(5):\n",
|
166 |
+
" generator = torch.Generator(\"cuda\").manual_seed(seed)\n",
|
167 |
+
" image = pipe(prompt=prompt, generator=generator,num_inference_steps=25).images[0]\n",
|
168 |
+
" image.save(f\"images/{seed}.png\")"
|
169 |
+
],
|
170 |
+
"metadata": {
|
171 |
+
"id": "L2Zn_1Knlmgs"
|
172 |
+
},
|
173 |
+
"execution_count": null,
|
174 |
+
"outputs": []
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"cell_type": "code",
|
178 |
+
"source": [
|
179 |
+
"# Inference\n",
|
180 |
+
"# this is the inference code that you can use after you have trained your model\n",
|
181 |
+
"# Unhide code below and change prj_path to your repo or local path (e.g. my_dreambooth_project)\n",
|
182 |
+
"#\n",
|
183 |
+
"#\n",
|
184 |
+
"#\n",
|
185 |
+
"from diffusers import DiffusionPipeline,StableDiffusionXLImg2ImgPipeline\n",
|
186 |
+
"import torch\n",
|
187 |
+
"\n",
|
188 |
+
"prj_path = \"NEXAS/stable_diff_custom\"\n",
|
189 |
+
"model = \"stabilityai/stable-diffusion-xl-base-1.0\"\n",
|
190 |
+
"pipe = DiffusionPipeline.from_pretrained(\n",
|
191 |
+
" model,\n",
|
192 |
+
" torch_dtype=torch.float16,\n",
|
193 |
+
" )\n",
|
194 |
+
"pipe.to(\"cuda\")\n",
|
195 |
+
"pipe.load_lora_weights(prj_path, weight_name=\"pytorch_lora_weights.safetensors\")\n",
|
196 |
+
"\n",
|
197 |
+
"refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained(\n",
|
198 |
+
" \"stabilityai/stable-diffusion-xl-refiner-1.0\",\n",
|
199 |
+
" torch_dtype=torch.float16,\n",
|
200 |
+
" )\n",
|
201 |
+
"refiner.to(\"cuda\")\n",
|
202 |
+
"\n",
|
203 |
+
"prompt = \"photo of a nkl person,in a black suit 4k\"\n",
|
204 |
+
"\n",
|
205 |
+
"seed = 42\n",
|
206 |
+
"generator = torch.Generator(\"cuda\").manual_seed(seed)\n",
|
207 |
+
"image = pipe(prompt=prompt, generator=generator).images[0]\n",
|
208 |
+
"image = refiner(prompt=prompt, generator=generator, image=image).images[0]\n",
|
209 |
+
"image.save(f\"generated_image.png\")"
|
210 |
+
],
|
211 |
+
"metadata": {
|
212 |
+
"id": "M8i_ae_obcGe"
|
213 |
+
},
|
214 |
+
"execution_count": null,
|
215 |
+
"outputs": []
|
216 |
+
}
|
217 |
+
],
|
218 |
+
"metadata": {
|
219 |
+
"accelerator": "GPU",
|
220 |
+
"colab": {
|
221 |
+
"gpuType": "T4",
|
222 |
+
"provenance": []
|
223 |
+
},
|
224 |
+
"kernelspec": {
|
225 |
+
"display_name": "Python 3",
|
226 |
+
"name": "python3"
|
227 |
+
},
|
228 |
+
"language_info": {
|
229 |
+
"name": "python"
|
230 |
+
}
|
231 |
+
},
|
232 |
+
"nbformat": 4,
|
233 |
+
"nbformat_minor": 0
|
234 |
+
}
|