sleepygorgoyle commited on
Commit
a969267
·
verified ·
1 Parent(s): f067155

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +138 -0
README.md CHANGED
@@ -1,3 +1,141 @@
1
  ---
2
  license: mit
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
  ---
4
+ The model uses only sign `ӏ` for explosive consonants (small cyrillic palochka letter)!
5
+
6
+ ```python
7
+ import torch
8
+ from transformers import BertTokenizer, AutoModel
9
+ import numpy as np
10
+ import pandas as pd
11
+ import razdel
12
+ import matplotlib.pyplot as plt
13
+ from tqdm.auto import tqdm, trange
14
+ ```
15
+ Download the model from Huggingface repository:
16
+ ```python
17
+ model_name = 'NM-development/labse-en-ru-ce-prototype'
18
+ tokenizer = BertTokenizer.from_pretrained(model_name)
19
+ model = AutoModel.from_pretrained(model_name)
20
+ ```
21
+ Assign files with the texts you want to split into parallel sentences:
22
+ ```python
23
+ file_ru = None
24
+ file_nm = None
25
+
26
+ if file_ru is None or file_nm is None:
27
+ nm_text = 'Ламро. Сахьт. Къена. Адам. Зуда. Вокха. Тӏулг.'
28
+ ru_text = 'Горец. Час. Старый. Человек. Жена. Высокий. Камень.'
29
+ else:
30
+ with open(file_nm, 'r') as f1, open(file_ru, 'r') as f2:
31
+ nm_text = f1.read()
32
+ ru_text = f2.read()
33
+ ```
34
+ In the following section define auxillary functions for parallel sentence comparison:
35
+ ```python
36
+ def embed(text):
37
+ encoded_input = tokenizer(text, padding=True, truncation=True, max_length=128, return_tensors='pt')
38
+ with torch.inference_mode():
39
+ model_output = model(**encoded_input.to(model.device))
40
+ embeddings = model_output.pooler_output
41
+ embeddings = torch.nn.functional.normalize(embeddings)
42
+ return embeddings[0].cpu().numpy()
43
+
44
+ def center_norm(v):
45
+ v = v - v.mean(0)
46
+ return v / (v**2).sum(1, keepdims=True) ** 0.5
47
+
48
+
49
+ def center_dot(x, y):
50
+ m = (x.sum(0) + y.sum(0)) / (x.shape[0] + y.shape[0])
51
+ x = x - m
52
+ y = y - m
53
+ x = x / (x**2).sum(1, keepdims=True) ** 0.5
54
+ y = y / (y**2).sum(1, keepdims=True) ** 0.5
55
+ return np.dot(x, y.T)
56
+
57
+ def get_top_mean_by_row(x, k=5):
58
+ m, n = x.shape
59
+ k = min(k, n)
60
+ topk_indices = np.argpartition(x, -k, axis=1)[:, -k:]
61
+ rows, _ = np.indices((m, k))
62
+ return x[rows, topk_indices].mean(1)
63
+
64
+ def align3(sims):
65
+
66
+ #sims = np.dot(center_norm(orig_vecs), center_norm(sum_vecs).T) ** 3
67
+ #sims = center_dot(orig_embeds, sum_embeds) #** 3
68
+
69
+ rewards = np.zeros_like(sims)
70
+ choices = np.zeros_like(sims).astype(int) # 1: choose this pair, 2: decrease i, 3: decrease j
71
+
72
+ # алгоритм, разрешающий пропускать сколько угодно пар, лишь бы была монотонность
73
+ for i in range(sims.shape[0]):
74
+ for j in range(0, sims.shape[1]):
75
+ # вариант первый: выровнять i-тое предложение с j-тым
76
+ score_add = sims[i, j]
77
+ if i > 0 and j > 0: # вот как тогда выровняются предыдущие
78
+ score_add += rewards[i-1, j-1]
79
+ choices[i, j] = 1
80
+ best = score_add
81
+ if i > 0 and rewards[i-1, j] > best:
82
+ best = rewards[i-1, j]
83
+ choices[i, j] = 2
84
+ if j > 0 and rewards[i, j-1] > best:
85
+ best = rewards[i, j-1]
86
+ choices[i, j] = 3
87
+ rewards[i, j] = best
88
+ alignment = []
89
+ i = sims.shape[0] - 1
90
+ j = sims.shape[1] - 1
91
+ while i > 0 and j > 0:
92
+ if choices[i, j] == 1:
93
+ alignment.append([i, j])
94
+ i -= 1
95
+ j -= 1
96
+ elif choices[i, j] == 2:
97
+ i -= 1
98
+ else:
99
+ j -= 1
100
+ return alignment[::-1]
101
+
102
+ def make_sents(text):
103
+ sents = [s.text.replace('\n', ' ').strip() for p in text.split('\n\n') for s in razdel.sentenize(p)]
104
+ sents = [s for s in sents if s]
105
+ return sents
106
+ ```
107
+ Firstly split your texts into sentences:
108
+ ```python
109
+ sents_nm = make_sents(nm_text)
110
+ sents_ru = make_sents(ru_text)
111
+ ```
112
+ Then embed all the chunks:
113
+ ```python
114
+ emb_ru = np.stack([embed(s) for s in tqdm(sents_ru)])
115
+ emb_nm = np.stack([embed(s) for s in tqdm(sents_nm)])
116
+ ```
117
+ Now compare sentenses' semanics vectors and build correlation heatmap:
118
+ ```python
119
+ pen = np.array([[min(len(x), len(y)) / max(len(x), len(y)) for x in sents_nm] for y in sents_ru])
120
+ sims = np.maximum(0, np.dot(emb_ru, emb_nm.T)) ** 1 * pen
121
+
122
+ alpha = 0.2
123
+ penalty = 0.2
124
+ sims_rel = (sims.T - get_top_mean_by_row(sims) * alpha).T - get_top_mean_by_row(sims.T) * alpha - penalty
125
+
126
+ alignment = align3(sims_rel)
127
+
128
+ print(sum(sims[i, j] for i, j in alignment) / min(sims.shape))
129
+ plt.figure(figsize=(12, 6))
130
+ plt.subplot(1, 2, 1)
131
+ plt.imshow(sims_rel)
132
+ plt.subplot(1, 2, 2)
133
+ plt.scatter(*list(zip(*alignment)), s=5);
134
+ ```
135
+ Finally, save the parallel corpus into a json file:
136
+ ```python
137
+ nm_ru_parallel_corpus = pd.DataFrame({'nm_text' : [sents_nm[x[1]] for x in alignment], 'ru_text' : [sents_ru[x[0]] for x in alignment]})
138
+ corpus_filename = 'nm_ru_corpus.json'
139
+ with open(corpus_filename, 'w') as f:
140
+ nm_ru_parallel_corpus.to_json(f, force_ascii=False, indent=4)
141
+ ```